Description

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles.

This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip emissions, mitigating potential impact reductions from transit usage. In some cases, a multimodal transit trips with automobile access or egress may be higher than a competing automobile trip.

In the near-term, automobile access or egress in some Los Angeles transit systems may account for up to 66% of multimodal greenhouse gas trip emissions, and as much as 75% of multimodal air quality impacts. Fossil fuel energy generation and combustion, low vehicle occupancies, and longer trip distances contribute most to increased multimodal trip impacts. Spatial supply chain analysis indicates that life-cycle air quality impacts may occur largely locally (in Los Angeles) or largely remotely (elsewhere) depending on the propulsion method and location of upstream life-cycle processes. Reducing 10% of transit system greenhouse emissions requires a shift of 23% to 50% of automobile access or egress trips to a zero emissions mode.

A corresponding peer-reviewed journal publication is available here:
Greenhouse Gas and Air Quality Effects of Auto First-Last Mile Use With Transit, Christopher Hoehne and Mikhail Chester, 2017, Transportation Research Part D, 53, pp. 306-320,

Included in this item (2)



Details

Collaborating institutions
School of Sustainable Engineering and the Built Environment (SSEBE) / Center for Earth Systems Engineering and Management
Identifier
  • Identifier Value
    ASU-SSEBE-CESEM-2017-RPR-003

Machine-readable links