Description
Hydrophobic ionizable organic compounds (HIOCs) like per- and polyfluoroalkyl substances (PFAS), certain pharmaceuticals, and surfactants have been detected in groundwater, wastewater, and drinking water. Anion exchange resin treatment is an effective process for removal of anionic contaminants from water. Spent

Hydrophobic ionizable organic compounds (HIOCs) like per- and polyfluoroalkyl substances (PFAS), certain pharmaceuticals, and surfactants have been detected in groundwater, wastewater, and drinking water. Anion exchange resin treatment is an effective process for removal of anionic contaminants from water. Spent anion exchange resins are conventionally regenerated with high alcohol by volume (ABV) methanol in solution with brine. While effective for regeneration of resins saturated with inorganic anions such as sulfate, nitrate, and perchlorate, HIOCs prove more resistant to regeneration. This research investigated the efficacy of using novel cosolvent solutions with brine to regenerate resins saturated with organic carboxylate and sulfonate anions to understand the effects cosolvent properties have on regenerative ability. Experiments were conducted on six PFAS compounds to evaluate trends in regeneration for three alcohols. For all PFAS species, equivalent ABV and brine solutions showed greatest regeneration with 1-propanol over ethanol and methanol. Experiments with the pharmaceutical sodium diclofenac were conducted showing similar regeneration of 75% methanol and 25% 1-propanol for equivalent salt concentrations and higher regeneration with 1-propanol than ethanol and methanol for equivalent ABV. A series of experiments with surfactant dodecylbenzene sulfonate determined that the key parameters to determine regeneration of the resin for an alcohol cosolvent solution were cosolvent volume fraction, molar mass, Kow value, solution ionic strength, and dielectric constant. Individual assessments on the cost-effectiveness, flammability, and sustainability of cosolvent solutions point to possible future experiments and opportunities for recycled distillery waste streams as regenerative solutions for anion exchange resin.
Reuse Permissions
  • Downloads
    pdf (807.4 KB)

    Details

    Title
    • Novel Cosolvent Regeneration for Organic-loaded Anion Exchange Resin
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Sustainable Engineering

    Machine-readable links