Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Nitrogen Recovery from Human Urine by Membrane Processes
  5. Full metadata

Nitrogen Recovery from Human Urine by Membrane Processes

Full metadata

Description

This dissertation investigated the use of membrane processes to selectively separate and concentrate nitrogen in human urine. The targeted nitrogen species to be recovered were urea from fresh human urine and unionized ammonia from hydrolyzed human urine. Chapter 1 investigated a novel two-step process of forward osmosis (FO) and membrane distillation (MD) to recover the urea in fresh human urine. Specifically, FO was used to selectively separate urea from the other components in urine and MD was used to concentrate the separated urea. The combined process was able to produce a product solution that had an average urea concentration that is 45–68% of the urea concentration found in the fresh urine with greater than 90% rejection of total organic carbon (TOC).Chapter 2 determined the transport behavior of low molecular weight neutral nitrogen compounds in order to maximize ammonia recovery from real hydrolyzed human urine by FO. Novel strategic pH manipulation between the feed and the draw solution allowed for up to 86% recovery of ammonia by keeping the draw solution pH <6.5 and the feed solution pH >11. An economic analysis showed that ammonia recovery by FO has the potential to be much more economically favorable compared to ammonia air stripping or ion exchange if the proper draw solute is chosen.
Chapter 3 investigated the dead-end rejection of urea in fresh urine at varying pH and the rejection of unionized ammonia and the ammonium ion in hydrolyzed urine by reverse osmosis (RO), nanofiltration (NF), and microfiltration (MF). When these different membrane separation processes were compared, NF is found to be a promising technology to recover up to 90% of ammonia from hydrolyzed urine with a high rejection of salts and organics.
Chapter 4 investigated the use of the RO and NF to recover ammonia from hydrolyzed human urine in a cross-flow system where both rejection and fouling experiments were performed. For both RO and NF, ammonia rejection was found to be 0% while still achieving high rejection of TOC and salts, and MF pretreatment greatly reduced the extent of fouling on the membrane surface.

Date Created
2020
Contributors
  • Ray, Hannah (Author)
  • Boyer, Treavor H (Thesis advisor)
  • Perreault, Francois (Committee member)
  • Sinha, Shahnawaz (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Environmental engineering
  • Ammonia
  • Forward Osmosis
  • Nanofiltration
  • Reverse Osmosis
  • Urea
  • Urine Diversion
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
200 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161248
Level of coding
minimal
Cataloging Standards
asu1
Note
Partial requirement for: Ph.D., Arizona State University, 2020
Field of study: Engineering
System Created
  • 2021-11-16 11:30:10
System Modified
  • 2021-11-30 12:51:28
  •     
  • 7 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM Dataverse
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-two Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. #1 ASU, #2 Stanford, #3 MIT. - U.S. News and World Report, 5 years, 2016-2020
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency