Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Investigating The Performance Of 3-D Printed Sorbents For Direct Air Capture Of CO2
  5. Full metadata

Investigating The Performance Of 3-D Printed Sorbents For Direct Air Capture Of CO2

Full metadata

Description

In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents.

Date Created
2020
Contributors
  • Obeng-Ampomah, Terry (Author)
  • Phelan, Patrick (Thesis advisor)
  • Lackner, Klaus (Committee member)
  • Shuaib, Abdelrahman (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Mechanical Engineering
  • Climate Change
  • 3D Printing
  • Climate Change
  • CO2 Capture
  • Ion exchange resins
  • Photopolymer Resin
  • stereolithography
Resource Type
Text
Genre
Masters Thesis
Academic theses
Extent
60 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57325
Level of coding
minimal
Note
Masters Thesis Mechanical Engineering 2020
System Created
  • 2020-06-01 08:32:02
System Modified
  • 2021-08-26 09:47:01
  •     
  • 1 year 6 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information