Limitations of Classical Tomographic Reconstructions from Restricted Measurements and Enhancing with Physically Constrained Machine Learning

Document
Description

This work is concerned with how best to reconstruct images from limited angle tomographic measurements. An introduction to tomography and to limited angle tomography will be provided and a

This work is concerned with how best to reconstruct images from limited angle tomographic measurements. An introduction to tomography and to limited angle tomography will be provided and a brief overview of the many fields to which this work may contribute is given.

The traditional tomographic image reconstruction approach involves Fourier domain representations. The classic Filtered Back Projection algorithm will be discussed and used for comparison throughout the work. Bayesian statistics and information entropy considerations will be described. The Maximum Entropy reconstruction method will be derived and its performance in limited angular measurement scenarios will be examined.

Many new approaches become available once the reconstruction problem is placed within an algebraic form of Ax=b in which the measurement geometry and instrument response are defined as the matrix A, the measured object as the column vector x, and the resulting measurements by b. It is straightforward to invert A. However, for the limited angle measurement scenarios of interest in this work, the inversion is highly underconstrained and has an infinite number of possible solutions x consistent with the measurements b in a high dimensional space.

The algebraic formulation leads to the need for high performing regularization approaches which add constraints based on prior information of what is being measured. These are constraints beyond the measurement matrix A added with the goal of selecting the best image from this vast uncertainty space. It is well established within this work that developing satisfactory regularization techniques is all but impossible except for the simplest pathological cases. There is a need to capture the "character" of the objects being measured.

The novel result of this effort will be in developing a reconstruction approach that will match whatever reconstruction approach has proven best for the types of objects being measured given full angular coverage. However, when confronted with limited angle tomographic situations or early in a series of measurements, the approach will rely on a prior understanding of the "character" of the objects measured. This understanding will be learned by a parallel Deep Neural Network from examples.