Data-Efficient Reinforcement Learning Control of Robotic Lower-Limb Prosthesis With Human in the Loop

Document
Description

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task environments. Reinforcement learning (RL) is capable of automatically learning from interacting with the environment. It becomes a natural candidate to replace human prosthetists to customize the control parameters. However, neither traditional RL approaches nor the popular deep RL approaches are readily suitable for learning with limited number of samples and samples with large variations. This dissertation aims to explore new RL based adaptive solutions that are data-efficient for controlling robotic prostheses.

This dissertation begins by proposing a new flexible policy iteration (FPI) framework. To improve sample efficiency, FPI can utilize either on-policy or off-policy learning strategy, can learn from either online or offline data, and can even adopt exiting knowledge of an external critic. Approximate convergence to Bellman optimal solutions are guaranteed under mild conditions. Simulation studies validated that FPI was data efficient compared to several established RL methods. Furthermore, a simplified version of FPI was implemented to learn from offline data, and then the learned policy was successfully tested for tuning the control parameters online on a human subject.

Next, the dissertation discusses RL control with information transfer (RL-IT), or knowledge-guided RL (KG-RL), which is motivated to benefit from transferring knowledge acquired from one subject to another. To explore its feasibility, knowledge was extracted from data measurements of able-bodied (AB) subjects, and transferred to guide Q-learning control for an amputee in OpenSim simulations. This result again demonstrated that data and time efficiency were improved using previous knowledge.

While the present study is new and promising, there are still many open questions to be addressed in future research. To account for human adaption, the learning control objective function may be designed to incorporate human-prosthesis performance feedback such as symmetry, user comfort level and satisfaction, and user energy consumption. To make the RL based control parameter tuning practical in real life, it should be further developed and tested in different use environments, such as from level ground walking to stair ascending or descending, and from walking to running.