Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Network Representation Learning in Social Media
  5. Full metadata

Network Representation Learning in Social Media

Full metadata

Description

The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed.

Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks.

Date Created
2018
Contributors
  • Wang, Suhang (Author)
  • Liu, Huan (Thesis advisor)
  • Aggarwal, Charu (Committee member)
  • Sen, Arunabha (Committee member)
  • Tong, Hanghang (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Computer Science
  • Network representation learning
  • Social networks
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
133 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.50576
Level of coding
minimal
Note
Doctoral Dissertation Computer Science 2018
System Created
  • 2018-10-01 08:05:20
System Modified
  • 2021-08-26 09:47:01
  •     
  • 1 year 7 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information