The Role of ERK/MAPK In The Postnatal Development of Lower Motor Neurons

Document
Description
The Erk/MAPK pathway plays a major role in cell growth, differentiation, and survival. Genetic mutations that cause dysregulation in this pathway can result in the development of Rasopathies, a group of several different syndromes including Noonan Syndrome, Costello Syndrome, and

The Erk/MAPK pathway plays a major role in cell growth, differentiation, and survival. Genetic mutations that cause dysregulation in this pathway can result in the development of Rasopathies, a group of several different syndromes including Noonan Syndrome, Costello Syndrome, and Neurofibromatosis Type-1. Since these mutations are germline and affect all cell types it is hard to differentiate the role that Erk/MAPK plays in each cell type. Previous research has shown that individual cell types utilize the Erk/MAPK pathway in different ways. For example, the morphological development of lower motor neuron axonal projections is Erk/MAPK-independent during embryogenesis, while nociceptive neuron projections require Erk/MAPK to innervate epidermal targets. Here, we tested whether Erk/MAPK played a role in the postnatal development of lower motor neurons during crucial periods of activity-dependent circuit modifications. We have generated Cre-dependent conditional Erk/MAPK mutant mice that exhibit either loss or gain of Erk/MAPK signaling specifically in ChAT:Cre expressing lower motor neurons. Importantly, we found that Erk/MAPK is necessary for the development of neuromuscular junction morphology by the second postnatal week. In contrast, we were unable to detect a significant difference in lower motor neuron development in Erk/MAPK gain-of-function mice. The data suggests that Erk/MAPK plays an important role in postnatal lower motor neuron development by regulating the morphological maturation of the neuromuscular junction.