Studies on the three-dimensional structures of proteins using X-ray crystallography

Document
Description

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease resulting in muscle atrophy and paralysis via degeneration of motor neurons in the spinal cord. In this work, we used X-ray diffraction technique to solve the structures of the three variant of the of SMN protein, namely SMN 1-4, SMN-WT, and SMN-Δ7. The SMN 1-4, SMN-WT, and SMN-Δ7 crystals were diffracted to 2.7 Å, 5.5 Å and 3.0 Å, respectively. The three-dimensional structures of the three SMN proteins have been solved. The FMO protein from Pld. phaeum is a water soluble protein that is embedded in the cytoplasmic membrane and serves as an energy transfer funnel between the chlorosome and the reaction center. The FMO crystal diffracted to 1.99Å resolution and the three-dimensional structure has been solved. In previous studies, double mutant, DX, protein was purified and crystallized in the presence of ATP (Simmons et al., 2010; Smith et al. 2007). DX is a synthetic ATP binding protein which resulting from a random selection of DNA library. In this study, DX protein was purified and crystallized without the presence of ATP to investigate the conformational change in DX structure. The crystals of DX were diffracted to 2.5 Å and the three-dimensional structure of DX has been solved.