Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Dissertation on linear asset pricing models
  5. Full metadata

Dissertation on linear asset pricing models

Full metadata

Description

One necessary condition for the two-pass risk premium estimator to be consistent and asymptotically normal is that the rank of the beta matrix in a proposed linear asset pricing model is full column. I first investigate the asymptotic properties of the risk premium estimators and the related t-test and Wald test statistics when the full rank condition fails. I show that the beta risk of useless factors or multiple proxy factors for a true factor are priced more often than they should be at the nominal size in the asset pricing models omitting some true factors. While under the null hypothesis that the risk premiums of the true factors are equal to zero, the beta risk of the true factors are priced less often than the nominal size. The simulation results are consistent with the theoretical findings. Hence, the factor selection in a proposed factor model should not be made solely based on their estimated risk premiums. In response to this problem, I propose an alternative estimation of the underlying factor structure. Specifically, I propose to use the linear combination of factors weighted by the eigenvectors of the inner product of estimated beta matrix. I further propose a new method to estimate the rank of the beta matrix in a factor model. For this method, the idiosyncratic components of asset returns are allowed to be correlated both over different cross-sectional units and over different time periods. The estimator I propose is easy to use because it is computed with the eigenvalues of the inner product of an estimated beta matrix. Simulation results show that the proposed method works well even in small samples. The analysis of US individual stock returns suggests that there are six common risk factors in US individual stock returns among the thirteen factor candidates used. The analysis of portfolio returns reveals that the estimated number of common factors changes depending on how the portfolios are constructed. The number of risk sources found from the analysis of portfolio returns is generally smaller than the number found in individual stock returns.

Date Created
2011
Contributors
  • Wang, Na (Author)
  • Ahn, Seung C. (Thesis advisor)
  • Kallberg, Jarl G. (Committee member)
  • Liu, Crocker H. (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Economics, Finance
  • Finance--Mathematical models.
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
viii, 91 p. : ill
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.9209
Statement of Responsibility
by Na Wang
Description Source
Viewed on May 9, 2012
Level of coding
full
Note
Partial requirement for: Ph. D., Arizona State University, 2011
Note type
thesis
Includes bibliographical references (p. 72-74)
Note type
bibliography
Field of study: Economics
System Created
  • 2011-08-12 04:42:23
System Modified
  • 2021-08-30 01:52:52
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information