148167-Thumbnail Image.png
Description

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation,

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered by 3D printed hinges. Current efforts frequently employ advanced materials and equipment that are not available to all users. The purpose of this project was to develop a parametric, print-in-place, self-locking hinge that could be printed using very basic materials and equipment. Six main designs were developed, printed, and tested for their strength in maintaining a locked position. Two general design types were used: 1) sliding hinges and 2) removable pin hinges. The test results were analyzed to identify and explain the causes of observed trends. The amount of interference between the pin vertex and knuckle hole edge was identified as the main factor in hinge strength. After initial testing, the designs were modified and applied to several structures, with successful results for a collapsible hexagon and a folding table. While the initial goal was to have one CAD model as a final product, the need to evaluate tradeoffs depending on the exact application made this impossible. Instead, a set of design guidelines was created to help users make strategic decisions and create their own design. Future work could explore additional scaling effects, printing factors, or other design types.

59.93 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Print, Lock, and Roll: Design of a Parametric, Print-in-Place, Self-Locking Hinge
Contributors
Date Created
2021-05
Resource Type
  • Text
  • Machine-readable links