Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Acanthamoeba Prevalence in a Simulated Reclaimed Water Distribution System
  5. Full metadata

Acanthamoeba Prevalence in a Simulated Reclaimed Water Distribution System

Full metadata

Description

With dwindling water resources due to drought and other pressures, water utilities are seeking to tap into alternative water sources as a means to improve water sustainability. Reclaimed water consists of treated wastewater and is widely used for non-potable purposes, such as irrigation, both agricultural and recreational. However, the reclaimed water distribution system can be subject to substantial regrowth of microorganisms, including opportunistic pathogens, even following rigorous disinfection. Factors that can influence regrowth include temperature, organic carbon levels, disinfectant type, and the time transported (i.e., water age) in the system. One opportunistic pathogen (OP) that is critical to understanding microbial activity in both reclaimed and drinking water distribution systems is Acanthamoeba. In order to better understand the potential for this amoeba to proliferate in reclaimed water systems and influence other OPs, a simulated reclaimed water distribution system was studied. The objective of this study was to compare the prevalence of Acanthamoeba and one of its endosymbionts, Legionella, across varying assimilable organic carbon (AOC) levels, temperatures, disinfectants, and water ages in a simulated reclaimed water distribution system. The results of the study showed that cooler temperatures, larger water age, and chlorine conditions yielded the lowest detection of Acanthamoeba gene copies per mL or cm2 for bulk water and biofilm samples, respectively.

Date Created
2016-12
Contributors
  • Donaldson, Kandace (Author)
  • Ankeny, Casey (Thesis director)
  • Edwards, Marc (Committee member)
  • Pruden, Amy (Committee member)
  • Harrington Bioengineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Reclaimed Water
  • Opportunistic Pathogens
  • Acanthamoeba
Resource Type
Text
Extent
6 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.42136
Embargo Release Date
Thu, 04/04/2019 - 01:52
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:58
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information