Matching Items (19)

128534-Thumbnail Image.png

Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis

Description

Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are

Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.

Contributors

Created

Date Created
  • 2016-05-06

Biomedical Engineering Workforce Competencies for 21st Century Healthcare Technology Product Development Teams: A BME Student Cohort Perspective

Description

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.

Contributors

Agent

Created

Date Created
  • 2017-05

134675-Thumbnail Image.png

Analyzing the Achievement and Attitude of Students Using Concept Mapping in an Active Learning Classroom

Description

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts are related to each other. Concept mapping can be implemented in many different types of classrooms because it can be easily adjusted for the needs of the teacher and class specifically. The goal of this project is to analyze both the attitude and achievement of students using concept mapping of college students in an active learning classroom. In order to evaluate the students' concept maps we will use the expert map scoring method, which compares the students concept maps to an expertly created concept map for similarities; the more similar the two maps are, the higher the score. We will collect and record students' scores on concept maps as they continue through the one semester class. Certain chapters correspond to specific exams due to the information contained in the lectures, chapters 1-4 correspond to exam 1 and so forth. We will use this information to correlate the average concept map score across these chapters to one exam score. There was no significant correlation found between the exam grades and the corresponding scores on the concept maps (Pearson's R values of 0.27, 0.26, and -0.082 for Exam 1, 2 and 3 respectively). According to Holm et all "it was found that 85% of students found interest or attainment in the concept mapping session, only 44% thought there was a cost, and 63% thought it would help them to be successful."

Contributors

Agent

Created

Date Created
  • 2016-12

134866-Thumbnail Image.png

Investigation of Student Achievement and Attitude about a Flipped Classroom Using Linked Lecture Videos in Biomedical Engineering

Description

Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in

Flipped classrooms invert the traditional teaching methods and deliver the lecture online outside of the classroom. An increase in technology accessibility is increasing the prevalence of this teaching technique in universities. In this study, we aim to address some of the uncertainties of a flipped classroom by implementing a new lecture format in Transport Phenomena. Transport Phenomena is a junior level biomedical engineering course originally flipped in Spring 2013. Since transitioning to a flipped classroom, students have been required to watch 75-minute lectures outside of class where the instructor covered key concepts and examples using paper and marker on a document camera. In class, students then worked in groups to solve problems with instructor and teaching assistant feedback. Students also completed self-graded homework with the opportunity to earn lost points back by discussing fundamental misconceptions. We are introducing re-formatted mini lectures that contain the same content broken down as well as example problems worked out in a tutorial technique instead of traditional solving method. The purpose of this study is to determine the effectiveness of newly created mini lectures with integrated questions and links in terms of student achievement and attitude [interest, utility, and "cost" (time, effort, and emotion)].

Contributors

Agent

Created

Date Created
  • 2016-12

134882-Thumbnail Image.png

Using Lethal siRNA for a Future Therapeutic in Cancerous Patients

Description

Difficult to treat cancer patients, specifically those tumors that are metastatic and drug-resistant, prove to have the lowest survival rates when compared to more localized types. The commonplace combination therapies,

Difficult to treat cancer patients, specifically those tumors that are metastatic and drug-resistant, prove to have the lowest survival rates when compared to more localized types. The commonplace combination therapies, surgery, chemotherapy, and radiation, do not usually result in remission and sometimes cannot be done with these specific patients. RNA interference therapeutics, especially those that use short-interfering RNA (siRNA), have given rise to a novel field that employs the mechanisms in the body to silence the gene expression post-transcriptionally. The main cell types used in this research were Ewing Sarcoma, Acute Myelogenous Leukemia, and Rhabdomyosarcoma cells. Initial assays involved the testing of the cells' responsiveness to a panel of siRNA compounds, to better understand the most effective ones. The siRNA UBBs1 proved to be the most cytotoxic to all cell lines tested, allowing for further investigation through transfection procedures for cellular assays and RNA purification for expression analysis. The data showed decreased cell viability for the UBBs1 treated group for both RD and RH-30 Rhabdomyosarcoma cell lines, especially at a much lower concentration than traditional chemotherapy drug dose response assays. The RNA purification and quantification of the transfected cells over time showed the biggest decrease in gene expression when treated with UBBs1. The use of siRNA in future therapeutics could be a highly-specific method to induce cytotoxicity of cancer cells, but more successful clinical testing and better manufacturing processes need to be established first.

Contributors

Agent

Created

Date Created
  • 2016-12

134180-Thumbnail Image.png

Implementing Kinetic Activities into a Children's Summer Program to Encourage STEM Engagement in Children Ages 5-11

Description

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running for roughly 40 minutes. The lesson plans were created to cover a myriad of scientific topics to account for varied student interest. The topics covered were plant biology, aerodynamics, zoology, geology, chemistry, physics, and astronomy. Each lesson was scaffolded to match the learning needs of the three age groups (5-6 year olds, 7-8 year olds, 9-11 year olds) and to encourage engagement. "Engagement" was measured by pre- and post-activity surveys approved by IRB. The surveys were in the form of statements where the children would totally agree, agree, be undecided, disagree, or totally disagree with it. To more accurately test engagement, the smiley face Likert scale was incorporated with the answer choices. After implementation of the intervention, two-tailed paired t-tests showed that student engagement significantly increased for the two lesson plans of Aerodynamics and Chemistry.

Contributors

Agent

Created

Date Created
  • 2017-12

135836-Thumbnail Image.png

Assessment of Student Responses to Various Resources Offered in Biomedical Engineering and Materials Science Courses

Description

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.

Contributors

Agent

Created

Date Created
  • 2016-05

135321-Thumbnail Image.png

Stereotypical Analysis of Wind Instruments in College-Level Concert Band

Description

The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels

The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels of musical professionalism in Western culture. In order to determine what these stereotypes might entail, several thousand social media and blog posts were analyzed, and direct quotations detailing the perceived stereotypical personality profiles for each of the four instruments were collected. From these, the three most commonly mentioned characteristics were isolated for each of the instrument groups as follows: female gender, femininity, and giggliness for flutists, intelligence, studiousness, and demographics (specifically being an Asian male) for clarinetists, quirkiness, eccentricity, and being seen as a misfit for oboists, and overconfidence, attention-seeking behavior, and coolness for saxophonists. From these traits, a survey was drafted which asked participating college-aged musicians various multiple choice, opinion scale, and short-answer questions that gathered how much they agree or disagree with each trait describing the instrument from which it was derived. Their responses were then analyzed to determine how much correlation existed between the researched characteristics and the opinions of modern musicians. From these results, it was determined that 75% of the traits that were isolated for a particular instrument were, in fact, recognized as being true in the survey data, demonstrating that the stereotypes do exist and seem to be widely recognizable across many age groups, locations, and levels of musical skill. Further, 89% of participants admitted that the instrument they play has a certain stereotype associated with it, but only 38% of people identify with that profile. Overall, it was concluded that stereotypes, which are overwhelmingly negative and gendered by nature, are indeed propagated, but musicians do not appear to want to identify with them, and they reflect a more archaic and immature sense that does not correlate to the trends observed in modern, professional music.

Contributors

Agent

Created

Date Created
  • 2016-05

135765-Thumbnail Image.png

The Ethics of Brain-Computer Interfaces

Description

The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the

The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological signals from the brain and translate those signals into commands that control an external device such as a wheelchair or a robotic exoskeleton. Despite the potential for BCIs to vastly improve the lives of almost one billion people, one question arises: Just because we can use brain-computer interfaces, should we? The human brain is an embodiment of the mind, which is largely seen to determine a person's identity, so a number of ethical and philosophical concerns emerge over current and future uses of BCIs. These concerns include privacy, informed consent, autonomy, identity, enhancement, and justice. In this thesis, I focus on three of these issues: privacy, informed consent, and autonomy. The ultimate purpose of brain-computer interfaces is to provide patients with a greater degree of autonomy; thus, many of the ethical issues associated with BCIs are intertwined with autonomy. Currently, brain-computer interfaces exist mainly in the domain of medicine and medical research, but recently companies have started commercializing BCIs and providing them at affordable prices. These consumer-grade BCIs are primarily for non-medical purposes, and so they are beyond the scope of medicine. As BCIs become more widespread in the near future, it is crucial for interdisciplinary teams of ethicists, philosophers, engineers, and physicians to collaborate to address these ethical concerns now before BCIs become more commonplace.

Contributors

Created

Date Created
  • 2016-05

135775-Thumbnail Image.png

Assessment of Concept Mapping in a Biomaterials Class

Description

Concept maps are teaching tools used to encourage students to utilize active learning strategies and to take responsibility for their own learning. The purpose of this two-semester study is to

Concept maps are teaching tools used to encourage students to utilize active learning strategies and to take responsibility for their own learning. The purpose of this two-semester study is to evaluate the use of concept maps in a junior-level Biomaterials classroom. The maps are assessed based on students' attitude, achievement, and persistence. No significant correlation was determined between concept map score and achievement (correlation coefficient = 0.1739 in the first semester, 0.2208 in the first set of the second semester, and 0.0829 in the second set of the second semester), though further studies should be completed to support the effects of concept mapping. Statistically significant increases in student attitude regarding concept mapping cost, interest, and utility between the two semesters were found (p = 0.013, p = 0.105, p = 0.002, p = 0.083 overall). Persistence was moderately high throughout the entire study (98% in the first semester and 100% in the second semester).

Contributors

Created

Date Created
  • 2016-05