Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Design and Construction of Controlled Back Reflectors for Bifacial Photovoltaic Modules
  5. Full metadata

Design and Construction of Controlled Back Reflectors for Bifacial Photovoltaic Modules

Full metadata

Description

Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial cells, has the potential to significantly decrease the LCOE of photovoltaic installation. The performance of bifacial modules is dependent on three major factors: incident irradiation on the front side of the module, reflected irradiation on the back side of the module, and the module's bifaciality. Bifaciality is an inherent property of the photovoltaic cells and is determined by the performance of the front and rear side of the module when tested at STC. The reflected light on the back side of the module, however, is determined by several different factors including the incident ground irradiance, shading from the modules and racking system, height of the module installation, and ground albedo. Typical ground surfaces have a low albedo, which means that the magnitude of reflected light is a low percentage of the incident irradiance. Non-uniformity of back-side irradiance can also reduce the power generation due to cell-to-cell mismatch losses. This study investigates the use of controlled back-side reflectors to improve the irradiance on the back side of loosely packed 48-cell bifacial modules and compares this performance to the performance of 48 and 60-cell bifacial modules which rely on the uncontrolled reflection off nearby ground surfaces. Different construction geometries and reflective coating materials were tested to determine optimal construction to improve the reflectivity and uniformity of reflection. Results of this study show a significant improvement of 10-14% total energy production from modules with reflectors when compared to the 48-cell module with an uncontrolled ground reflection.

Date Created
2018-05
Contributors
  • Bowersox, David Andrew (Author)
  • Tamizhmani, Govindasamy (Thesis director)
  • Srinivasan, Devarajan (Committee member)
  • School for Engineering of Matter, Transport and Energy (Contributor)
  • Engineering Programs (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Solar energy
  • solar
  • photovoltaics
  • Bifacial Photovoltaics
Resource Type
Text
Extent
24 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2017-2018
Handle
https://hdl.handle.net/2286/R.I.48152
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2018-04-21 12:22:59
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information