132508-Thumbnail Image.png
Description
Electrical stimulation can be used to activate peripheral nerve fibers to restore sensation to individuals with amputation and the technique is also being investigated as a means of treating a wide range of diseases. Longitudinal intrafascicular electrodes (LIFEs) are

Electrical stimulation can be used to activate peripheral nerve fibers to restore sensation to individuals with amputation and the technique is also being investigated as a means of treating a wide range of diseases. Longitudinal intrafascicular electrodes (LIFEs) are one of several types of electrodes that have been used to activate peripheral nerves. LIFEs can be used to activate small groups of fibers within a peripheral nerve fascicle, but the degree of their selectivity is uncertain. To investigate the effects of intrafascicular stimulation on nerve fiber activation, a mathematical, conductance-based model of an axon drawn from the literature was implemented and used to simulate the firing response of sensory nerve fibers in the presence of an applied monopolar electric field. Several axons were simulated to represent axons of different size, conductivity, spatial composition and location with respect to the electrode. Electric field profiles produced by pulses of different pulse widths and pulse amplitudes were created. Each fiber was placed within each resulting electric field and the firing threshold was determined. The effects of changes in pulse width, pulse amplitude, and distance on firing patterns were shown; all of these results were consistent with published experimental findings. The models showed lower firing threshold for smaller fibers than larger fibers and for fibers that were farther from the stimulating electrode than those that were closer. Firing threshold was also lower for stimuli of greater pulse width. Analysis of axon recruitment upon increases in pulse amplitude showed that the effects of fiber distance may be more pronounced than the effects of fiber size. This model can serve as a basis for further development to more accurately represent the effects of LIFEs and eventually may assist in the design of stimulation paradigms and waveforms to improve selectivity of axon activation when using LIFEs.
1.06 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Modelling the Response of Peripheral Nerve Axons to Applied Electric Fields
Contributors
Date Created
2019-05
Resource Type
  • Text
  • Machine-readable links