From B-Modes to Quantum Gravity and Unification of Forces

Document
Description

It is commonly anticipated that gravity is subjected to the standard principles of quantum mechanics. Yet some — including Einstein — have questioned that presumption, whose empirical basis is weak. Indeed, recently Dyson has emphasized that no conventional experiment is

It is commonly anticipated that gravity is subjected to the standard principles of quantum mechanics. Yet some — including Einstein — have questioned that presumption, whose empirical basis is weak. Indeed, recently Dyson has emphasized that no conventional experiment is capable of detecting individual gravitons. However, as we describe, if inflation occurred, the universe, by acting as an ideal graviton amplifier, affords such access. It produces a classical signal, in the form of macroscopic gravitational waves, in response to spontaneous (not induced) emission of gravitons. Thus recent BICEP2 observations of polarization in the cosmic microwave background (CMB) will, if confirmed, provide firm empirical evidence for the quantization of gravity. Their details also support quantitative ideas concerning the unification of strong, electromagnetic and weak forces, and of all these with gravity.