Conformal Mapping for Multiple Terminals

Document
Description

Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems

Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems involving two terminals. However, when faced with problems involving three or more terminals, which are more common in practical applications, existing conformal mapping methods apply assumptions or approximations. A general exact method does not exist for a structure with an arbitrary number of terminals. This study presents a conformal mapping method for multiple terminals. Through an accurate analysis of boundary conditions, additional terminals or boundaries are folded into the inner part of a mapped region. The method is applied to several typical situations, and the calculation process is described for two examples of an electrostatic actuator with three electrodes and of a light beam splitter with three ports. Compared with previously reported results, the solutions for the two examples based on our method are more precise and general. The proposed method is helpful in promoting the application of conformal mapping in analysis of practical problems.