Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Faculty and Staff
  3. ASU Scholarship Showcase
  4. Nonlinear Dynamics Induced Anomalous Hall Effect in Topological Insulators
  5. Full metadata

Nonlinear Dynamics Induced Anomalous Hall Effect in Topological Insulators

Full metadata

Description

We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

Date Created
2016-01-28
Contributors
  • Wang, Guanglei (Author)
  • Xu, Hongya (Author)
  • Lai, Ying-Cheng (Author)
  • Ira A. Fulton Schools of Engineering (Contributor)
Resource Type
Text
Extent
9 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
Attribution
Primary Member of
ASU Scholarship Showcase
Identifier
Digital object identifier: 10.1038/srep19803
Identifier Type
International standard serial number
Identifier Value
2045-2322
Peer-reviewed
No
Open Access
No
Series
SCIENTIFIC REPORTS
Handle
https://hdl.handle.net/2286/R.I.44364
Preferred Citation

Wang, G., Xu, H., & Lai, Y. (2016). Nonlinear dynamics induced anomalous Hall effect in topological insulators. Scientific Reports, 6(1). doi:10.1038/srep19803

Level of coding
minimal
Cataloging Standards
asu1
Note
The final version of this article, as published in Scientific Reports, can be viewed online at: https://www.nature.com/articles/srep19803, opens in a new window
System Created
  • 2017-06-02 01:42:09
System Modified
  • 2021-12-07 01:38:43
  •     
  • 1 year 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information