This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 36
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
141494-Thumbnail Image.png
Description

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor.

Results:
We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise.

Conclusions:
The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling.

ContributorsKostelich, Eric (Author) / Kuang, Yang (Author) / McDaniel, Joshua (Author) / Moore, Nina Z. (Author) / Martirosyan, Nikolay L. (Author) / Preul, Mark C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-12-21
Description

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment,

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.

Created2014-07-01
128738-Thumbnail Image.png
Description

A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same

A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.

Created2016-02-04
129026-Thumbnail Image.png
Description

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe outcomes of 2009 A/H1N1 influenza infections in different populations (e.g., [1-5]), analyses of the determinants of mortality risk spanning multiple pandemic waves and geographic regions are scarce. Between-country differences in the mortality burden of the 2009 pandemic could be linked to differences in influenza case management, underlying population health, or intrinsic differences in disease transmission [6]. Additional studies elucidating the determinants of disease severity globally are warranted to guide prevention efforts in future influenza pandemics.

In Mexico, the 2009 A/H1N1 influenza pandemic was characterized by a three-wave pattern occurring in the spring, summer, and fall of 2009 with substantial geographical heterogeneity [7]. A recent study suggests that Mexico experienced high excess mortality burden during the 2009 A/H1N1 influenza pandemic relative to other countries [6]. However, an assessment of potential factors that contributed to the relatively high pandemic death toll in Mexico are lacking. Here, we fill this gap by analyzing a large series of laboratory-confirmed A/H1N1 influenza cases, hospitalizations, and deaths monitored by the Mexican Social Security medical system during April 1 through December 31, 2009 in Mexico. In particular, we quantify the association between disease severity, hospital admission delays, and neuraminidase inhibitor use by demographic characteristics, pandemic wave, and geographic regions of Mexico.

Methods: We analyzed a large series of laboratory-confirmed pandemic A/H1N1 influenza cases from a prospective surveillance system maintained by the Mexican Social Security system, April-December 2009. We considered a spectrum of disease severity encompassing outpatient visits, hospitalizations, and deaths, and recorded demographic and geographic information on individual patients. We assessed the impact of neuraminidase inhibitor treatment and hospital admission delay (≤ > 2 days after disease onset) on the risk of death by multivariate logistic regression.

Results: Approximately 50% of all A/H1N1-positive patients received antiviral medication during the Spring and Summer 2009 pandemic waves in Mexico while only 9% of A/H1N1 cases received antiviral medications during the fall wave (P < 0.0001). After adjustment for age, gender, and geography, antiviral treatment significantly reduced the risk of death (OR = 0.52 (95% CI: 0.30, 0.90)) while longer hospital admission delays increased the risk of death by 2.8-fold (95% CI: 2.25, 3.41).

Conclusions: Our findings underscore the potential impact of decreasing admission delays and increasing antiviral use to mitigate the mortality burden of future influenza pandemics.

Created2012-04-20
128263-Thumbnail Image.png
Description

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.

Created2014-07-09
128259-Thumbnail Image.png
Description

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of epidemics. We focus on reactionary behavioural changes, which apply to both social distancing and voluntary vaccination participations. Our analyses reveal complex relationships between spontaneous and uncoordinated behavioural changes, the emergence of its contagion properties, and mitigation of infectious diseases. We find that the presence of effective behavioural changes can impede the persistence of disease. Furthermore, it was found that under perfect effective behavioural change, there are three regions in the response factor (e.g., imitation and/or reactionary) and behavioural scale factor (e.g., global/local) factors ρ–α behavioural space. Mainly, (1) disease is always endemic even in the presence of behavioural change, (2) behavioural-prevalence plasticity is observed and disease can sometimes be eradication, and (3) elimination of endemic disease under permanence of permanent behavioural change is achieved. These results suggest that preventive behavioural changes (e.g., non-pharmaceutical prophylactic measures, social distancing and exclusion, crowd avoidance) are influenced by individual differences in perception of risks and are a salient feature of epidemics. Additionally, these findings indicates that care needs to be taken when considering the effect of adaptive behavioural change in predicting the course of epidemics, and as well as the interpretation and development of the public health measures that account for spontaneous behavioural changes.

Created2015-10-14
128588-Thumbnail Image.png
Description

Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical “theranostics.” In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies.

Methods: Review of the literature.

Results: A wide spectrum of fluorophores that

Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical “theranostics.” In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies.

Methods: Review of the literature.

Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.

Conclusion: We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

Created2016-10-17
128766-Thumbnail Image.png
Description

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.

Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.

Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.

Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Created2011-06-21
128753-Thumbnail Image.png
Description

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

ContributorsLiu, Hai-Ning (Author) / Gao, Li-Dong (Author) / Chowell-Puente, Gerardo (Author) / Hu, Shi-Xiong (Author) / Lin, Xiao-Ling (Author) / Li, Xiu-Jun (Author) / Ma, Gui-Hua (Author) / Huang, Ru (Author) / Yang, Hui-Suo (Author) / Tian, Huaiyu (Author) / Xiao, Hong (Author) / Simon M. Levin Mathematical, Computational and Modeling Sciences Center (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-09-03