This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

390-Thumbnail Image.png
Description

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable when they use taxpayer dollars and students’ right to educational opportunities. Opponents of formulaic use of test-score data argue that most standardized test data is susceptible to fatal technical flaws, is a partial picture of student achievement, and leads to behavior that corrupts the measures.

A Bayesian perspective on summative ordinal classification is a possible framework for combining quantitative outcome data for students with the qualitative types of evaluation that critics of high-stakes testing advocate. This paper describes the key characteristics of a Bayesian perspective on classification, describes a method to translate a naïve Bayesian classifier into a point-based system for evaluation, and draws conclusions from the comparison on the construction of algorithmic (including point-based) systems that could capture the political and practical benefits of a Bayesian approach. The most important practical conclusion is that point-based systems with fixed components and weights cannot capture the dynamic and political benefits of a reciprocal relationship between professional judgment and quantitative student outcome data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
387-Thumbnail Image.png
Description

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education as well as sociological, economic, anthropological, and political perspectives on schooling.

The core of most social foundations classes lies in the relationship between formal schooling and broader society. This emphasis means that while some parts of psychology may be related to the core issues of social foundations classes—primarily social psychology—the questions that are asked within a social-foundations class are different from the questions raised in child development, educational psychology, and most teaching-methods classes. For example, after finishing the first chapter of this text, you should be able to answer the question, “Why does the federal government pay public schools to feed poor students at breakfast and lunch?” Though there is some psychology research tying nutrition to behavior and learning, the policy is based on much broader expectations of schools. In this case, “Children learn better if they are well-fed” both is based on research and also is an incomplete answer.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2013
385-Thumbnail Image.png
Description

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for migration, whether international, internal to the U.S., or between different school sectors. All of the adjustment factors have a similar form, allowing simulation of estimates from real data, assuming different unmeasured net migration rates. In addition, a new age-based graduation rate, based on mathematical demography, allows the simulation of estimates on a parallel basis using data from Virginia's public schools.

Both the direct analysis and simulation demonstrate that graduation rates can only be useful with accurate information about student migration. A discussion of Florida's experiences with longitudinal cohort graduation rates highlights some of the difficulties with the current status of the oldest state databases and the need for both technical confidence and definitional clarity. Meeting the No Child Left Behind mandates for school-level graduation rates requires confirmation of transfers and an audit of any state system for accuracy, and basing graduation rates on age would be a significant improvement over rates calculated using grade-based data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
386-Thumbnail Image.png
Description

Analysis of newly-released data from the Florida Department of Education suggests that commonly-used proxies for high school graduation are generally weak predictors of the new federal rate.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2012
388-Thumbnail Image.png
Description

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century North America, or exams’ controlling access to the civil service in Imperial China. Rather than testing for ritual or access to mobility, the modern uses of testing are much closer to the state-building project of a tax census, such as the Domesday Book of medieval Britain after the Norman Invasion, the social engineering projects described in James Scott's Seeing like a State (1998), or the “mapping the world” project that David Nye described in America as Second Creation (2004). This paper will explore both the instrumental and cultural differences among testing as ritual, testing as mobility control, and testing as state-building.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2014-12-08
128730-Thumbnail Image.png
Description

One way to view ‘equitable pedagogy’ is through an opportunity to learn (OTL) lens, meaning that regardless of race, class, or culture, a student has access to rigorous and meaningful content, as well as appropriate resources and instruction necessary to learn and demonstrate understanding of that content. Assessment holds a

One way to view ‘equitable pedagogy’ is through an opportunity to learn (OTL) lens, meaning that regardless of race, class, or culture, a student has access to rigorous and meaningful content, as well as appropriate resources and instruction necessary to learn and demonstrate understanding of that content. Assessment holds a unique position in the classroom in that it can both uncover whether inequitable conditions exist (i.e., performance gaps, denied OTL) and provide an OTL by mediating communication between teacher and students regarding learning progress and what is important to learn. Nevertheless, individuals entering teacher education programs often hold deficit views toward marginalized students, such as Language Minorities (LMs), believe that assessment strictly serves to evaluate learning, and do not do consider how language and culture influence student thinking–views supplanting assessment’s role at supporting an equitable pedagogy for LMs. Through surveys, interviews, program artifacts, and classroom observation, I report on a case study of one pre-service physics teacher, Dean, to depict how his expertise at assessing science did evolve throughout his yearlong teacher education program in terms of (a) becoming more knowledgeable of the role of language and (b) developing a belief in incorporating ‘discourse’ while assessing science. Within the case study, I analyze one particular episode from Dean’s teaching practicum to highlight remaining challenges for pre-service teachers to integrate science and language in classroom assessment—namely, interpreting students’ use of language along with their understanding of core science ideas. The findings underscore the need for connecting language and equity issues to content-area assessment in teacher preparation.

ContributorsLyon, Edward (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2013-07-19
128513-Thumbnail Image.png
Description

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

ContributorsDybala, F. (Author) / Polak, M. P. (Author) / Kopaczek, J. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128505-Thumbnail Image.png
Description

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviors. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.

ContributorsWang, Gang (Author) / Robert, Cedric (Author) / Tuna, Aslihan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Alamdari, Sarah (Author) / Gerber, Iann C. (Author) / Amand, Thierry (Author) / Marie, Xavier (Author) / Tongay, Sefaattin (Author) / Urbaszek, Bernhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-14
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05