This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 45
Filtering by

Clear all filters

390-Thumbnail Image.png
Description

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable when they use taxpayer dollars and students’ right to educational opportunities. Opponents of formulaic use of test-score data argue that most standardized test data is susceptible to fatal technical flaws, is a partial picture of student achievement, and leads to behavior that corrupts the measures.

A Bayesian perspective on summative ordinal classification is a possible framework for combining quantitative outcome data for students with the qualitative types of evaluation that critics of high-stakes testing advocate. This paper describes the key characteristics of a Bayesian perspective on classification, describes a method to translate a naïve Bayesian classifier into a point-based system for evaluation, and draws conclusions from the comparison on the construction of algorithmic (including point-based) systems that could capture the political and practical benefits of a Bayesian approach. The most important practical conclusion is that point-based systems with fixed components and weights cannot capture the dynamic and political benefits of a reciprocal relationship between professional judgment and quantitative student outcome data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
388-Thumbnail Image.png
Description

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century North America, or exams’ controlling access to the civil service in Imperial China. Rather than testing for ritual or access to mobility, the modern uses of testing are much closer to the state-building project of a tax census, such as the Domesday Book of medieval Britain after the Norman Invasion, the social engineering projects described in James Scott's Seeing like a State (1998), or the “mapping the world” project that David Nye described in America as Second Creation (2004). This paper will explore both the instrumental and cultural differences among testing as ritual, testing as mobility control, and testing as state-building.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2014-12-08
387-Thumbnail Image.png
Description

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education as well as sociological, economic, anthropological, and political perspectives on schooling.

The core of most social foundations classes lies in the relationship between formal schooling and broader society. This emphasis means that while some parts of psychology may be related to the core issues of social foundations classes—primarily social psychology—the questions that are asked within a social-foundations class are different from the questions raised in child development, educational psychology, and most teaching-methods classes. For example, after finishing the first chapter of this text, you should be able to answer the question, “Why does the federal government pay public schools to feed poor students at breakfast and lunch?” Though there is some psychology research tying nutrition to behavior and learning, the policy is based on much broader expectations of schools. In this case, “Children learn better if they are well-fed” both is based on research and also is an incomplete answer.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2013
385-Thumbnail Image.png
Description

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for migration, whether international, internal to the U.S., or between different school sectors. All of the adjustment factors have a similar form, allowing simulation of estimates from real data, assuming different unmeasured net migration rates. In addition, a new age-based graduation rate, based on mathematical demography, allows the simulation of estimates on a parallel basis using data from Virginia's public schools.

Both the direct analysis and simulation demonstrate that graduation rates can only be useful with accurate information about student migration. A discussion of Florida's experiences with longitudinal cohort graduation rates highlights some of the difficulties with the current status of the oldest state databases and the need for both technical confidence and definitional clarity. Meeting the No Child Left Behind mandates for school-level graduation rates requires confirmation of transfers and an audit of any state system for accuracy, and basing graduation rates on age would be a significant improvement over rates calculated using grade-based data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
386-Thumbnail Image.png
Description

Analysis of newly-released data from the Florida Department of Education suggests that commonly-used proxies for high school graduation are generally weak predictors of the new federal rate.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2012
129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129470-Thumbnail Image.png
Description

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial).

Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.

ContributorsFu, Qiushi (Author) / Choi, Jason (Author) / Gordon, Andrew M. (Author) / Jesunathadas, Mark (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-18
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129271-Thumbnail Image.png
Description

Recently, multistage testing (MST) has been adopted by several important large-scale testing programs and become popular among practitioners and researchers. Stemming from the decades of history of computerized adaptive testing (CAT), the rapidly growing MST alleviates several major problems of earlier CAT applications. Nevertheless, MST is only one among all

Recently, multistage testing (MST) has been adopted by several important large-scale testing programs and become popular among practitioners and researchers. Stemming from the decades of history of computerized adaptive testing (CAT), the rapidly growing MST alleviates several major problems of earlier CAT applications. Nevertheless, MST is only one among all possible solutions to these problems. This article presents a new adaptive testing design, “on-the-fly assembled multistage adaptive testing” (OMST), which combines the benefits of CAT and MST and offsets their limitations. Moreover, OMST also provides some unique advantages over both CAT and MST. A simulation study was conducted to compare OMST with MST and CAT, and the results demonstrated the promising features of OMST. Finally, the “Discussion” section provides suggestions on possible future adaptive testing designs based on the OMST framework, which could provide great flexibility for adaptive tests in the digital future and open an avenue for all types of hybrid designs based on the different needs of specific tests.

ContributorsZheng, Yi (Author) / Chang, Hua-Hua (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2015-03-01