This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

268-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
269-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
266-Thumbnail Image.png
Description

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected recent historical articles (N = 22) from two music education research journals. The mean level of difficulty (readability) for all 22 articles was grade 14.04, near the beginning of the second year of college. Since research shows that most people read below their highest completed school grade and also prefer easier materials, this is probably an appropriate level of difficulty for the presumptive readers of these two journals (i.e., holders of undergraduate and graduate degrees). Professors, librarians, and others responsible for guiding students toward reading material at appropriate levels of readability could benefit from these results.

264-Thumbnail Image.png
Description

Poster about meeting the academic and cultural needs of international students at the Arizona State University Libraries and the University of Arizona Libraries. The poster presentation focuses on:

1. Strategies to promote information literacy skills of international students in the two university libraries.
2. What the libraries are doing to improve services

Poster about meeting the academic and cultural needs of international students at the Arizona State University Libraries and the University of Arizona Libraries. The poster presentation focuses on:

1. Strategies to promote information literacy skills of international students in the two university libraries.
2. What the libraries are doing to improve services to meet the needs and encourage library use among international students.
3. Partnerships that have been established with other academic departments or institutions.

ContributorsHumphreys, Alexandra H. (Author) / Pfander, Jeanne (Author) / Situ, Ping (Author) / Arizona State University. ASU Library (Contributor)
Created2014-11-12
267-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
127658-Thumbnail Image.png
Description

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected recent

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected recent historical articles (N = 22) from two music education research journals. The mean level of difficulty (readability) for all 22 articles was grade 14.04, near the beginning of the second year of college. Since research shows that most people read below their highest completed school grade and also prefer easier materials, this is probably an appropriate level of difficulty for the presumptive readers of these two journals (i.e., holders of undergraduate and graduate degrees). Professors, librarians, and others responsible for guiding students toward reading material at appropriate levels of readability could benefit from these results.

||中文摘要
《音樂教育研究期刊》與《音樂教育歷史研究期刊》中部分文章的閱讀難度水準
Alexandra H. Humphreys
Arizona State University—Phoenix, U.S.A.
Jere T. Humphreys
Arizona State University—Tempe, U.S.A.
可讀性估算公式被廣泛運用在教育領域,而且在商業和政府部門的使用頻率與日俱增。在過去的30 年裏,
研究人員共研發了200 多種可讀性估算公式,這些公式所估算的可讀性指標與實際閱讀理解程度具有中度
或很強的相關性。本文使用了五種著名的可讀性估算公式來評估最近發表的22 篇音樂教育史文章,發現這
五種公式的計算結果有很強的相關性。這22 篇文章的平均閱讀難度水準是14.04, 接近大學二年級初期的
閱讀水準。由於先前的研究结果显示大部分人喜歡閱讀難度水準低於本人學歷水準的文章以及比較容易理
解的文章,這兩種期刊中文章的閱讀難度水準非常適合預計的閱讀對象(有學士學位和研究生學位的人)。
本文研究結果可能會對那些大學教授,圖書館員和其他負責指導學生閱讀的人員有所幫助。

ContributorsHumphreys, Alexandra H. (Author) / Humphreys, Jere Thomas (Author)
Created2013
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
129319-Thumbnail Image.png
Description

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

ContributorsBasu, Soumyadipta (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-19
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01