This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

266-Thumbnail Image.png
Description

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected

Readability formulas are used widely in education, and increasingly in business and government. Over 30 years of research on more than 200 readability formulas has demonstrated moderate to strong predictive correlations with reading comprehension. In this study, five well-known readability formulas correlated highly with each other when applied to selected recent historical articles (N = 22) from two music education research journals. The mean level of difficulty (readability) for all 22 articles was grade 14.04, near the beginning of the second year of college. Since research shows that most people read below their highest completed school grade and also prefer easier materials, this is probably an appropriate level of difficulty for the presumptive readers of these two journals (i.e., holders of undergraduate and graduate degrees). Professors, librarians, and others responsible for guiding students toward reading material at appropriate levels of readability could benefit from these results.

268-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
267-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
264-Thumbnail Image.png
Description

Poster about meeting the academic and cultural needs of international students at the Arizona State University Libraries and the University of Arizona Libraries. The poster presentation focuses on:

1. Strategies to promote information literacy skills of international students in the two university libraries.
2. What the libraries are doing to improve services

Poster about meeting the academic and cultural needs of international students at the Arizona State University Libraries and the University of Arizona Libraries. The poster presentation focuses on:

1. Strategies to promote information literacy skills of international students in the two university libraries.
2. What the libraries are doing to improve services to meet the needs and encourage library use among international students.
3. Partnerships that have been established with other academic departments or institutions.

ContributorsHumphreys, Alexandra H. (Author) / Pfander, Jeanne (Author) / Situ, Ping (Author) / Arizona State University. ASU Library (Contributor)
Created2014-11-12
269-Thumbnail Image.png
Description

A poster presentation on resources and strategies from Arizona State University Libraries to encourage understanding of and participation in Open Access practices, including promotional materials (flyers, library guides, videos, and more) and persuasive talking points.

Created2013-04-10
129467-Thumbnail Image.png
Description

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction.

ContributorsSzyszka, Paul (Author) / Gerkin, Richard (Author) / Galizia, C. Giovanni (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-25
128776-Thumbnail Image.png
Description

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.

ContributorsHladun, Kristen R. (Author) / Smith, Brian (Author) / Mustard, Julie (Author) / Morton, Ray R. (Author) / Trumble, John T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-04-13
128889-Thumbnail Image.png
Description

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile – the antennal lobe (AL) – and a higher order multimodal integration and learning center – the mushroom body (MB) – in the honey bee brain. We recorded projection neurons (PN) of the AL and extrinsic neurons (EN) of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84–120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback.

ContributorsStrube-Bloss, Martin (Author) / Herrera-Valdez, Marco A. (Author) / Smith, Brian (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-11-29
128905-Thumbnail Image.png
Description

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.

ContributorsSinakevitch, Irina (Author) / Mustard, Julie (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-01-18
128321-Thumbnail Image.png
Description

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

Created2013-10-25