This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 49
Filtering by

Clear all filters

129556-Thumbnail Image.png
Description

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and to expand the extant baseline to include Soricidae. Specimens were chosen to sample a broad range of environments, semi-desert to rainforest. Species examined were all largely insectivorous, but some are reported to supplement their diets with vertebrate tissues and others with plant matter. Results indicate subtle but significant differences between samples grouped by both diet independent of environment and environment independent of diet. Subtle diet differences were more evident in microwear texture variation considered by habitat (i.e., grassland). These results suggest that while environment does not swamp the diet signal in shrew incisor microwear, studies can benefit from control of habitat type.

ContributorsWithnell, Charles (Author) / Ungar, Peter S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-01
Description

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of this foraging advantage has not been confirmed. Experimental studies and ethnographic reports provide conflicting results regarding the relative importance of the functional, economic, and social roles of hafted hunting technology. The controlled experiment reported here was designed to test the functional hypothesis for stone-tipped weapons using spears and ballistics gelatin. It differs from previous investigations of this type because it includes a quantitative analysis of wound track profiles and focuses specifically on hand-delivered spear technology. Our results do not support the hypothesis that tipped spears penetrate deeper than untipped spears. However, tipped spears create a significantly larger inner wound cavity that widens distally. This inner wound cavity is analogous to the permanent wound cavity in ballistics research, which is considered the key variable affecting the relative ‘stopping power’ or ‘killing power’ of a penetrating weapon. Tipped spears conferred a functional advantage to Middle Pleistocene hominins, potentially affecting the frequency and regularity of hunting success with important implications for human adaptation and life history.

ContributorsWilkins, Jayne (Author) / Schoville, Benjamin (Author) / Brown, Kyle S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-27
129394-Thumbnail Image.png
Description

The purpose of this paper is to introduce the Geologic Mapping of Vesta Special Issue/Section of Icarus, which includes several papers containing geologic maps of the surface of Vesta made to support data analysis conducted by the Dawn Science Team during the Vesta Encounter (July 2011–September 2012). In this paper

The purpose of this paper is to introduce the Geologic Mapping of Vesta Special Issue/Section of Icarus, which includes several papers containing geologic maps of the surface of Vesta made to support data analysis conducted by the Dawn Science Team during the Vesta Encounter (July 2011–September 2012). In this paper we briefly discuss pre-Dawn knowledge of Vesta, provide the goals of our geologic mapping campaign, discuss the methodologies and materials used for geologic mapping, review the global geologic context of Vesta, discuss the challenges of mapping the geology of Vesta as a small airless body, and describe the content of the papers in this Special Issue/Section. We conclude with a discussion of lessons learned from our quadrangle-based mapping effort and provide recommendations for conducting mapping campaigns as part of planetary spacecraft nominal missions.

ContributorsWilliams, David (Author) / Yingst, R. Aileen (Author) / Garry, W. Brent (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-03
129399-Thumbnail Image.png
Description

We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (∼63 km diam.) and Calpurnia (∼53 km diam.) and their surrounding ejecta field on the local

We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (∼63 km diam.) and Calpurnia (∼53 km diam.) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between ∼40 and 60 Ma (depending upon choice of chronology system), and Marcia’s ejecta blanket ranges in age between ∼120 and 390 Ma (depending upon choice of chronology system).

We interpret the geologic units in and around Marcia crater to mark a major vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of ∼280–990 Ma based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta’s ancient crust preserved on Vestalia Terra.

ContributorsWilliams, David (Author) / Denevi, Brett W. (Author) / Mittlefehldt, David W. (Author) / Mest, Scott C. (Author) / Schenk, Paul M. (Author) / Yingst, R. Aileen (Author) / Buczkowski, Debra L. (Author) / Scully, Jennifer E. C. (Author) / Garry, W. Brent (Author) / McCord, Thomas B. (Author) / Combe, Jean-Phillipe (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Nathues, Andreas (Author) / Le Corre, Lucille (Author) / Hoffmann, Martin (Author) / Reddy, Vishnu (Author) / Schaefer, Michael (Author) / Roatsch, Thomas (Author) / Preusker, Frank (Author) / Marchi, Simone (Author) / Kneissl, Thomas (Author) / Schmedemann, Nico (Author) / Neukum, Gerhard (Author) / Hiesinger, Harald (Author) / De Sanctis, Maria Cristina (Author) / Ammannito, Eleonora (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129400-Thumbnail Image.png
Description

We produced two 1:250,000 scale geologic maps of the adjacent quadrangles Av-6 Gegania and Av-7 Lucaria, located in the equatorial region of (4) Vesta (0–144°E, 22°S to 22°N). The mapping is based on clear and color filter images of the Framing Camera (FC) onboard the Dawn spacecraft, which has captured

We produced two 1:250,000 scale geologic maps of the adjacent quadrangles Av-6 Gegania and Av-7 Lucaria, located in the equatorial region of (4) Vesta (0–144°E, 22°S to 22°N). The mapping is based on clear and color filter images of the Framing Camera (FC) onboard the Dawn spacecraft, which has captured the entire illuminated surface of Vesta with high spatial resolution (up to ∼20 m/pixel), and on a digital terrain model derived from FC imagery. Besides the geologic mapping itself, a secondary purpose of this work is to investigate one of the most prominent morphological features on Vesta, namely the aggregation of several giant equatorial troughs termed the Divalia Fossae, most probably formed during the Rheasilvia impact near Vesta’s south pole. The up to 465 km long and 22 km wide troughs show height differences of up to 5 km between adjacent troughs and ridges. Another imprint of the Rheasilvia impact is the >350 km long and ∼250 km wide swath of ejecta crossing quadrangle Av-6 Gegania. This lobe shows a distinct appearance in FC color ratios and a high albedo in FC images, indicating a mineralogical similarity to material typically found within the Rheasilvia basin, in particular composed of diogenite-rich howardites. Almost the entire northern half of the mapping area shows the oldest surface, being dominated by upper crustal basaltic material. To the south, increasingly younger formations related to the Rheasilvia impact occur, either indicated by the troughs formed by Rheasilvia or by the Rheasilvia ejecta itself. Only medium sized impact craters with diameters less than 22 km occur within the two mapped quadrangles. Some of the craters exhibit ejecta blankets and/or distinctly dark or bright ejecta material in ejecta rays outside and exposures within the crater, and mass-wasting deposits down crater slopes, forming the youngest surfaces.

ContributorsSchaefer, Michael (Author) / Nathues, Andreas (Author) / Williams, David (Author) / Mittlefehldt, David W. (Author) / Le Corre, Lucille (Author) / Buczkowski, Debra L. (Author) / Kneissl, Thomas (Author) / Thangjam, Guneshwar S. (Author) / Hoffmann, Martin (Author) / Schmedemann, Nico (Author) / Schaefer, Tanja (Author) / Scully, Jennifer E. C. (Author) / Li, Jian-Yang (Author) / Reddy, Vishnu (Author) / Garry, W. Brent (Author) / Krohn, Katrin (Author) / Yingst, R. Aileen (Author) / Gaskell, Robert W. (Author) / Russell, Christopher T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129244-Thumbnail Image.png
Description

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model׳s compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

Created2015-02-21
129404-Thumbnail Image.png
Description

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA’s Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as ‘dark mantle’ material because it appears dark orange in the Framing Camera ‘Clementine-type’ color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera ‘Clementine-type’ color-ratio image as ‘light mantle material’ supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

ContributorsGarry, W. Brent (Author) / Williams, David (Author) / Yingst, R. Aileen (Author) / Mest, Scott C. (Author) / Buczkowski, Debra L. (Author) / Tosi, Federico (Author) / Schaefer, Michael (Author) / Le Corre, Lucille (Author) / Reddy, Vishnu (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11
129001-Thumbnail Image.png
Description

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination proportional to the population at each point in time.

Methods: We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the non-proportional model of vaccination and compare it to the proportional scheme typically found in the literature.

Results: The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.

Conclusions: The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.

Created2011-08-01
129002-Thumbnail Image.png
Description

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches.

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications.

Results: We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis.

Conclusions: MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

ContributorsGao, Weimin (Author) / Navarroli, Dena (Author) / Naimark, Jared (Author) / Zhang, Weiwen (Author) / Chao, Shih-hui (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-01-09