This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14
129428-Thumbnail Image.png
Description

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

ContributorsSyal, Karan (Author) / Wang, Wei (Author) / Shan, Xiaonan (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-01-15
128407-Thumbnail Image.png
Description

Background: Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The

Background: Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test.

Methods: Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated.

Results: Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson’s r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = −1.39° (−5.53, +2.75); t(22) = −0.70; p = 0.4933; Cohen’s d = − 0.15 (−0.58, 0.29)) or rectus femoris length (change = −0.005 (−0.013, +0.003); t(22) = −1.30; p = 0.2070; Cohen’s d = − 0.27 (−0.70, 0.16)) were not due to chance alone.

Conclusions: Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol.

ContributorsVigotsky, Andrew (Author) / Lehman, Gregory J. (Author) / Contreras, Bret (Author) / Beardsley, Chris (Author) / Chung, Bryan (Author) / Feser, Erin (Author) / College of Health Solutions (Contributor)
Created2015-09-24
128406-Thumbnail Image.png
Description

Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and

Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA) lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA) of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

ContributorsVigotsky, Andrew (Author) / Contreras, Bret (Author) / Beardsley, Chris (Author) / College of Health Solutions (Contributor)
Created2015-11-30
128405-Thumbnail Image.png
Description

Background: The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE).

Methods: Surface EMG electrodes were placed

Background: The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE).

Methods: Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion.

Results: No statistically significant (p < 0.05) differences were observed between PRONE (upper: 91.94%; lower: 94.52%) and SQUEEZE (upper: 92.04%; lower: 85.12%) for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects.

Conclusions: In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

ContributorsContreras, Bret (Author) / Vigotsky, Andrew (Author) / Schoenfeld, Brad J. (Author) / Beardsley, Chris (Author) / Cronin, John (Author) / College of Health Solutions (Contributor)
Created2015-09-22
128402-Thumbnail Image.png
Description

Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length,

Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

ContributorsVigotsky, Andrew (Author) / Feser, Erin (Author) / David Russell, Ryan (Author) / Contreras, Bret (Author) / College of Health Solutions (Contributor)
Created2015-01-06
128398-Thumbnail Image.png
Description

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

ContributorsVigotsky, Andrew (Author) / Lehman, Gregory J. (Author) / Beardsley, Chris (Author) / Contreras, Bret (Author) / Chung, Bryan (Author) / Feser, Erin (Author) / College of Health Solutions (Contributor)
Created2016-08-11
128518-Thumbnail Image.png
Description

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π–π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes.

ContributorsBruot, Christopher (Author) / Palma, Julio (Author) / Xiang, Limin (Author) / Mujica, Vladimiro (Author) / Ratner, Mark A. (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-09-04
128499-Thumbnail Image.png
Description

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models.

ContributorsLi, Yueqi (Author) / Xiang, Limin (Author) / Palma, Julio (Author) / Asai, Yoshihiro (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-04-15