This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

Description

In 2014/2015, Arizona State University (ASU) Libraries, the Labriola National American Indian Data Center, and the ASU American Indian Studies Department completed an ASU Institute for Humanities Research (IHR) seed grant entitled “Carlos Montezuma’s Wassaja Newsletter: Digitization, Access and Context” to digitize all ASU held issues of the newsletter Wassaja

In 2014/2015, Arizona State University (ASU) Libraries, the Labriola National American Indian Data Center, and the ASU American Indian Studies Department completed an ASU Institute for Humanities Research (IHR) seed grant entitled “Carlos Montezuma’s Wassaja Newsletter: Digitization, Access and Context” to digitize all ASU held issues of the newsletter Wassaja Freedom’s Signal for the Indian, which Yavapai activist-intellectual Carlos Montezuma, MD (1866-1923) self-published during 1916-1922. The grant team additionally selected a portion of the ASU Libraries Carlos Montezuma archival collection for digitization to provide a more complete picture of Dr. Carlos Montezuma’s life and work.

The ASU grant team produced a searchable online collection on the ASU Digital Repository and created an online exhibition in conjunction with the IHR Nexus Lab’s Developing Wassaja Project. The Nexus Lab’s role at ASU is to grow the digital humanities through interdisciplinary collaborations bringing together humanities, science, and technology. The Nexus Lab partnered with the grant team to create the Developing Wassaja Project which provided an opportunity for faculty, staff, and students at ASU to engage in electronic publication through web application development.

The resulting web platform, Wassaja: A Carlos Montezuma Project, provides context for this digitized collection and facilitates community interaction, including a partnership with Dr. Montezuma’s home community the Fort McDowell Yavapai Nation. In this webcast, Digital Projects Librarian Matthew Harp, Developing Wassaja Project team member Joe Buenker (subject librarian), and grant team member Joyce Martin (librarian and curator of the Labriola National American Indian Data Center) will discuss and demonstrate the resources created and the resulting partnership with the Fort McDowell Yavapai Nation. The webcast will focus on identifying collaborators and needed skills to engage in Digital Humanities research and on identifying the stages of a collaborative project.

Participants will gain insight on working directly with diverse communities; overcoming technical limitations of traditional institutional repositories; collaborative strategies with faculty, research centers, and cultural heritage societies; solutions for moving hidden collections into an engaging digital exhibition; integrating digital humanities research and instruction with library curation; and preparing for long term costs and management issues.

ContributorsHarp, Matthew (Author) / Martin, Joyce (Author) / Buenker, Joseph (Author)
Created2016-03-23
130097-Thumbnail Image.jpg
Description

Anthropology librarian Juliann Couture and Joyce Martin, curator of the Labriola National American Indian Data Center, looking at the Center's display of unique Hopi Kachina dolls. Four of the kachinas (Navan Kachina; Talavi Kachina; Flute Kachina; and Ahöla Kachina) were created by artist, carver, and former ASU employee Tony Dukepoo

Anthropology librarian Juliann Couture and Joyce Martin, curator of the Labriola National American Indian Data Center, looking at the Center's display of unique Hopi Kachina dolls. Four of the kachinas (Navan Kachina; Talavi Kachina; Flute Kachina; and Ahöla Kachina) were created by artist, carver, and former ASU employee Tony Dukepoo as a gift to the libraries in 1979. The kachina dolls are on display in the Labriola Center located on the 2nd floor of the Hayden Library on ASU's Tempe campus.

ContributorsMartin, Joyce (Interviewee) / Couture, Juliann (Interviewer) / Duvernay, Jennifer (Producer) / Harp, Matthew (Director, Editor, Videographer) / Jeffreys, Andrew (Videographer)
Created2012
130095-Thumbnail Image.png
Description

The Simon Ortiz and Labriola Center Lecture on Indigenous Land, Culture, and Community addresses topics and issues across disciplines in the arts, humanities, sciences, and politics. Underscoring Indigenous American experiences and perspectives, this Series seeks to create and celebrate knowledge that evolves from an Indigenous worldview that is inclusive and

The Simon Ortiz and Labriola Center Lecture on Indigenous Land, Culture, and Community addresses topics and issues across disciplines in the arts, humanities, sciences, and politics. Underscoring Indigenous American experiences and perspectives, this Series seeks to create and celebrate knowledge that evolves from an Indigenous worldview that is inclusive and that is applicable to all walks of life.” Professor Simon Ortiz discussed the overall nature of the Series, especially emphasizing the global nature of Indigenous concerns. Joyce Martin and Matthew Harp elaborated on the contributions of the Labriola National American Indian Data Center and ASU Libraries to the Series.

The Labriola Center hosts an informal event in Hayden Library which facilitates close interaction between the featured speaker and audience members. The ASU Libraries records the evening lectures which take place at the Heard Museum and presents both an audio podcast and streaming video of each lecture on the ASU Library Channel webpage. This lecture series provides not only a chance for community discussion at the events themselves, but through the innovative use of technology the ASU Libraries enables additional forums for discussion in blogs and web pages which choose to link to the streaming videos.

ContributorsHarp, Matthew (Author) / Martin, Joyce (Author) / Ortiz, Simon (Author) / Arizona State University. ASU Library (Contributor)
Created2010-11-17
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
129022-Thumbnail Image.png
Description

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection,

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration.

Results: Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus.

Conclusions: Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

ContributorsCartwright, Reed (Author) / Schwartz, Rachel (Author) / Merry, Alexandra (Author) / Howell, Megan (Author) / Biodesign Institute (Contributor)
Created2017-02-07
128403-Thumbnail Image.png
Description

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
128470-Thumbnail Image.png
Description

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.

ContributorsLevy Karin, Eli (Author) / Rabin, Avigayel (Author) / Ashkenazy, Haim (Author) / Shkedy, Dafna (Author) / Avram, Oren (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2015-11-03