This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128803-Thumbnail Image.png
Description

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.

ContributorsGross, Kellie S. (Author) / Brandner, Dieter D. (Author) / Martinez, Luis A. (Author) / Olive, M. Foster (Author) / Meisel, Robert L. (Author) / Mermelstein, Paul G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-12
128670-Thumbnail Image.png
Description

Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal

Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs) of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability toenhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.

ContributorsCleva, Richard (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-03-02
128678-Thumbnail Image.png
Description

Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy,

Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

ContributorsTomek, Seven (Author) / LaCrosse, Amber (Author) / Nemirovsky, Natali (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-06
128407-Thumbnail Image.png
Description

Background: Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The

Background: Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test.

Methods: Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated.

Results: Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson’s r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = −1.39° (−5.53, +2.75); t(22) = −0.70; p = 0.4933; Cohen’s d = − 0.15 (−0.58, 0.29)) or rectus femoris length (change = −0.005 (−0.013, +0.003); t(22) = −1.30; p = 0.2070; Cohen’s d = − 0.27 (−0.70, 0.16)) were not due to chance alone.

Conclusions: Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol.

ContributorsVigotsky, Andrew (Author) / Lehman, Gregory J. (Author) / Contreras, Bret (Author) / Beardsley, Chris (Author) / Chung, Bryan (Author) / Feser, Erin (Author) / College of Health Solutions (Contributor)
Created2015-09-24
128406-Thumbnail Image.png
Description

Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and

Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA) lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA) of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

ContributorsVigotsky, Andrew (Author) / Contreras, Bret (Author) / Beardsley, Chris (Author) / College of Health Solutions (Contributor)
Created2015-11-30
128405-Thumbnail Image.png
Description

Background: The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE).

Methods: Surface EMG electrodes were placed

Background: The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE).

Methods: Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion.

Results: No statistically significant (p < 0.05) differences were observed between PRONE (upper: 91.94%; lower: 94.52%) and SQUEEZE (upper: 92.04%; lower: 85.12%) for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects.

Conclusions: In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

ContributorsContreras, Bret (Author) / Vigotsky, Andrew (Author) / Schoenfeld, Brad J. (Author) / Beardsley, Chris (Author) / Cronin, John (Author) / College of Health Solutions (Contributor)
Created2015-09-22
128398-Thumbnail Image.png
Description

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

ContributorsVigotsky, Andrew (Author) / Lehman, Gregory J. (Author) / Beardsley, Chris (Author) / Contreras, Bret (Author) / Chung, Bryan (Author) / Feser, Erin (Author) / College of Health Solutions (Contributor)
Created2016-08-11