This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

128785-Thumbnail Image.png
Description

Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total

Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells.

ContributorsCrabbe, Aurelie (Author) / Liu, Yulong (Author) / Sarker, Shameema (Author) / Bonenfant, Nicholas R. (Author) / Barrila, Jennifer (Author) / Borg, Zachary D. (Author) / Lee, James J. (Author) / Weiss, Daniel J. (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-05-11
128885-Thumbnail Image.png
Description

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established.

Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

Created2011-12-19
128629-Thumbnail Image.png
Description

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580.

ContributorsYang, Jiseon (Author) / Barrila, Jennifer (Author) / Roland, Kenneth (Author) / Kilbourne, Jacquelyn (Author) / Ott, C. Mark (Author) / Forsyth, Rebecca (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-06-19
129405-Thumbnail Image.png
Description

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We have compiled a morphologic map and performed crater size–frequency distribution (CSFD) measurements to date the geologic units. The hemisphere is characterized by a heavily cratered surface with a few highly subdued basins up to ∼200 km in diameter. The most widespread unit is a plateau (cratered highland unit), similar to, although of lower elevation than the equatorial Vestalia Terra plateau. Large-scale troughs and ridges have regionally affected the surface. Between ∼180°E and ∼270°E, these tectonic features are well developed and related to the south pole Veneneia impact (Saturnalia Fossae trough unit), elsewhere on the hemisphere they are rare and subdued (Saturnalia Fossae cratered unit). In these pre-Rheasilvia units we observed an unexpectedly high frequency of impact craters up to ∼10 km in diameter, whose formation could in part be related to the Rheasilvia basin-forming event. The Rheasilvia impact has potentially affected the northern hemisphere also with S–N small-scale lineations, but without covering it with an ejecta blanket. Post-Rheasilvia impact craters are small (<60 km in diameter) and show a wide range of degradation states due to impact gardening and mass wasting processes. Where fresh, they display an ejecta blanket, bright rays and slope movements on walls. In places, crater rims have dark material ejecta and some crater floors are covered by ponded material interpreted as impact melt.

ContributorsRuesch, Ottaviano (Author) / Hiesinger, Harald (Author) / Blewett, David T. (Author) / Williams, David (Author) / Buczkowski, Debra (Author) / Scully, Jennifer (Author) / Yingst, R. Aileen (Author) / Roatsch, Thomas (Author) / Preusker, Frank (Author) / Jaumann, Ralf (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129404-Thumbnail Image.png
Description

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA’s Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as ‘dark mantle’ material because it appears dark orange in the Framing Camera ‘Clementine-type’ color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera ‘Clementine-type’ color-ratio image as ‘light mantle material’ supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

ContributorsGarry, W. Brent (Author) / Williams, David (Author) / Yingst, R. Aileen (Author) / Mest, Scott C. (Author) / Buczkowski, Debra L. (Author) / Tosi, Federico (Author) / Schaefer, Michael (Author) / Le Corre, Lucille (Author) / Reddy, Vishnu (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129399-Thumbnail Image.png
Description

We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (∼63 km diam.) and Calpurnia (∼53 km diam.) and their surrounding ejecta field on the local

We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (∼63 km diam.) and Calpurnia (∼53 km diam.) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between ∼40 and 60 Ma (depending upon choice of chronology system), and Marcia’s ejecta blanket ranges in age between ∼120 and 390 Ma (depending upon choice of chronology system).

We interpret the geologic units in and around Marcia crater to mark a major vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of ∼280–990 Ma based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta’s ancient crust preserved on Vestalia Terra.

ContributorsWilliams, David (Author) / Denevi, Brett W. (Author) / Mittlefehldt, David W. (Author) / Mest, Scott C. (Author) / Schenk, Paul M. (Author) / Yingst, R. Aileen (Author) / Buczkowski, Debra L. (Author) / Scully, Jennifer E. C. (Author) / Garry, W. Brent (Author) / McCord, Thomas B. (Author) / Combe, Jean-Phillipe (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Nathues, Andreas (Author) / Le Corre, Lucille (Author) / Hoffmann, Martin (Author) / Reddy, Vishnu (Author) / Schaefer, Michael (Author) / Roatsch, Thomas (Author) / Preusker, Frank (Author) / Marchi, Simone (Author) / Kneissl, Thomas (Author) / Schmedemann, Nico (Author) / Neukum, Gerhard (Author) / Hiesinger, Harald (Author) / De Sanctis, Maria Cristina (Author) / Ammannito, Eleonora (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129397-Thumbnail Image.png
Description

We studied high-resolution images of asteroid Vesta's surface (~70 and 20–25 m/pixel) obtained during the High- and Low-Altitude Mapping Orbits (HAMO, LAMO) of NASA's Dawn mission to assess the formation mechanisms responsible for a variety of lobate, flow-like features observed across the surface. We searched for evidence of volcanic flows,

We studied high-resolution images of asteroid Vesta's surface (~70 and 20–25 m/pixel) obtained during the High- and Low-Altitude Mapping Orbits (HAMO, LAMO) of NASA's Dawn mission to assess the formation mechanisms responsible for a variety of lobate, flow-like features observed across the surface. We searched for evidence of volcanic flows, based on prior mathematical modeling and the well-known basaltic nature of Vesta's crust, but no unequivocal morphologic evidence of ancient volcanic activity has thus far been identified. Rather, we find that all lobate, flow-like features on Vesta appear to be related either to impact or erosional processes. Morphologically distinct lobate features occur in and around impact craters, and most of these are interpreted as impact ejecta flows, or possibly flows of impact melt. Estimates of melt production from numerical models and scaling laws suggests that large craters like Marcia (~60 km diameter) could have potentially produced impact melt volumes ranging from tens of millions of cubic meters to a few tens of cubic kilometers, which are relatively small volumes compared to similar-sized lunar craters, but which are consistent with putative impact melt features observed in Dawn images. There are also examples of lobate flows that trend downhill both inside and outside of crater rims and basin scarps, which are interpreted as the result of gravity-driven mass movements (slumps and landslides).

ContributorsWilliams, David (Author) / O'Brien, David P. (Author) / Schenk, Paul M. (Author) / Denevi, Brett W. (Author) / Carsenty, Uri (Author) / Marchi, Simone (Author) / Scully, Jennifer E. C. (Author) / Jaumann, Ralf (Author) / De Sanctis, Maria Cristina (Author) / Palomba, Ernesto (Author) / Ammannito, Eleonora (Author) / Longobardo, Andrea (Author) / Magni, Gianfranco (Author) / Frigeri, Alessandro (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / Davison, Thomas M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-15
128767-Thumbnail Image.png
Description

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance.

Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.

Created2013-12-04
128336-Thumbnail Image.png
Description

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

ContributorsBarrila, Jennifer (Author) / Yang, Jiseon (Author) / Crabbe, Aurelie (Author) / Sarker, Shameema (Author) / Liu, Yulong (Author) / Ott, C. Mark (Author) / Nelman-Gonzalez, Mayra A. (Author) / Clemett, Simon J. (Author) / Nydam, Seth (Author) / Forsyth, Rebecca (Author) / Davis, Richard (Author) / Crucian, Brian E. (Author) / Quiriarte, Heather (Author) / Roland, Kenneth (Author) / Brenneman, Karen (Author) / Sams, Clarence (Author) / Loscher, Christine (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-02-28
128127-Thumbnail Image.png
Description

Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike “classical” non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This

Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike “classical” non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This is consistent with observations in animals, in which ST313 strains displayed lower levels of intestinal colonization and higher recovery from deeper tissues relative to classic NTS isolates. A better understanding of the key environmental factors regulating these systemic infections is urgently needed. Our previous studies using dynamic Rotating Wall Vessel (RWV) bioreactor technology demonstrated that physiological levels of fluid shear regulate virulence, gene expression, and stress response profiles of classic S. Typhimurium. Here we provide the first demonstration that fluid shear alters the virulence potential and pathogenesis-related stress responses of ST313 strain D23580 in a manner that differs from classic NTS.

ContributorsYang, Jiseon (Author) / Barrila, Jennifer (Author) / Roland, Kenneth (Author) / Ott, C. Mark (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-06-09