This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

Description

The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in

The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutch-mates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis.

We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-naïve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus.

ContributorsEllison, Amy R. (Author) / Savage, Anna E. (Author) / DiRenzo, Grace V. (Author) / Langhammer, Penny (Author) / Lips, Karen R. (Author) / Zamudio, Kelly R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129304-Thumbnail Image.png
Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

ContributorsGallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Sims, Patrick (Author) / Aoki, Toshihiro (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-02
128875-Thumbnail Image.png
Description

Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd). Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus

Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd). Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a highly susceptible species that has undergone substantial population declines throughout its range, rapidly and exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928).

Both average Bd infection intensity and zoospore output (i.e., the number of zoospores released per minute by an infected individual) increased exponentially until time of death (t50 = 7.018, p<0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were 4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158 zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE: 0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively correlated (t43 = 3.926, p<0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate Bd outbreak probability, especially as they relate to reintroduction programs.

ContributorsDiRenzo, Graziella V. (Author) / Langhammer, Penny (Author) / Zamudio, Kelly R. (Author) / Lips, Karen R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-27
128874-Thumbnail Image.png
Description

Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen’s role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild

Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen’s role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

ContributorsLanghammer, Penny (Author) / Lips, Karen R. (Author) / Burrowes, Patricia A. (Author) / Tunstall, Tate (Author) / Palmer, Crystal (Contributor) / Collins, James (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-10
129427-Thumbnail Image.png
Description

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed modeling of these room temperature spectra is required to extract the band gap values with the high accuracy required to determine the Sn concentration yc at which the alloy becomes a direct gap semiconductor. For the direct gap, this is accomplished using a microscopic model that allows the determination of direct gap energies with meV accuracy. For the indirect gap, it is shown that current theoretical models are inadequate to describe the emission properties of systems with close indirect and direct transitions. Accordingly, an ad hoc procedure is used to extract the indirect gap energies from the data. For y < 0.1 the resulting direct gap compositional dependence is given by ΔE0 = −(3.57 ± 0.06)y (in eV). For the indirect gap, the corresponding expression is ΔEind = −(1.64 ± 0.10)y (in eV). If a quadratic function of composition is used to express the two transition energies over the entire compositional range 0 ≤ y ≤ 1, the quadratic (bowing) coefficients are found to be b0 = 2.46 ± 0.06 eV (for E0) and bind = 1.03 ± 0.11 eV (for Eind). These results imply a crossover concentration yc = $0.073 [+0.007 over -0.006], much lower than early theoretical predictions based on the virtual crystal approximation, but in better agreement with predictions based on large atomic supercells.

ContributorsJiang, L. (Author) / Gallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Aoki, Toshihiro (Author) / Mathews, J. (Author) / Kouvetakis, John (Author) / Menéndez, Jose (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-01
128375-Thumbnail Image.png
Description

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Sex, is reported, which shows a high abundance of

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Sex, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu2ZnSnSe4.

ContributorsAguiar, Jeffery A. (Author) / Patel, Maulik (Author) / Aoki, Toshihiro (Author) / Wozny, Sarah (Author) / Al-Jassim, Mowafak (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-02
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05
128491-Thumbnail Image.png
Description

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S–S molecular oscillations. High-pressure Raman studies further reveal that the AgS-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

ContributorsWu, Kedi (Author) / Torun, Engin (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Fan, Xi (Author) / Pant, Anupum (Author) / Wright, David (Author) / Aoki, Toshihiro (Author) / Peeters, Francois M. (Author) / Soignard, Emmanuel (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-22
128556-Thumbnail Image.png
Description

Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away

Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

ContributorsRez, Peter (Author) / Aoki, Toshihiro (Author) / March, Katia (Author) / Gur, Dvir (Author) / Krivanek, Ondrej L. (Author) / Dellby, Niklas (Author) / Lovejoy, Tracy C. (Author) / Wolf, Sharon G. (Author) / Cohen, Hagai (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-10