This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 32
Filtering by

Clear all filters

390-Thumbnail Image.png
Description

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable

This paper presents a Bayesian framework for evaluative classification. Current education policy debates center on arguments about whether and how to use student test score data in school and personnel evaluation. Proponents of such use argue that refusing to use data violates both the public’s need to hold schools accountable when they use taxpayer dollars and students’ right to educational opportunities. Opponents of formulaic use of test-score data argue that most standardized test data is susceptible to fatal technical flaws, is a partial picture of student achievement, and leads to behavior that corrupts the measures.

A Bayesian perspective on summative ordinal classification is a possible framework for combining quantitative outcome data for students with the qualitative types of evaluation that critics of high-stakes testing advocate. This paper describes the key characteristics of a Bayesian perspective on classification, describes a method to translate a naïve Bayesian classifier into a point-based system for evaluation, and draws conclusions from the comparison on the construction of algorithmic (including point-based) systems that could capture the political and practical benefits of a Bayesian approach. The most important practical conclusion is that point-based systems with fixed components and weights cannot capture the dynamic and political benefits of a reciprocal relationship between professional judgment and quantitative student outcome data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
388-Thumbnail Image.png
Description

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century

The spread of academic testing for accountability purposes in multiple countries has obscured at least two historical purposes of academic testing: community ritual and management of the social structure. Testing for accountability is very different from the purpose of academic challenges one can identify in community “examinations” in 19th century North America, or exams’ controlling access to the civil service in Imperial China. Rather than testing for ritual or access to mobility, the modern uses of testing are much closer to the state-building project of a tax census, such as the Domesday Book of medieval Britain after the Norman Invasion, the social engineering projects described in James Scott's Seeing like a State (1998), or the “mapping the world” project that David Nye described in America as Second Creation (2004). This paper will explore both the instrumental and cultural differences among testing as ritual, testing as mobility control, and testing as state-building.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2014-12-08
387-Thumbnail Image.png
Description

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education

This is a brief text intended for use in undergraduate school-and-society classes. Your class may also be titled “Social foundations of education.” “Social foundations of education” is an interdisciplinary field that includes both humanities and social-science perspectives on schooling. It thus includes study of the philosophy and history of education as well as sociological, economic, anthropological, and political perspectives on schooling.

The core of most social foundations classes lies in the relationship between formal schooling and broader society. This emphasis means that while some parts of psychology may be related to the core issues of social foundations classes—primarily social psychology—the questions that are asked within a social-foundations class are different from the questions raised in child development, educational psychology, and most teaching-methods classes. For example, after finishing the first chapter of this text, you should be able to answer the question, “Why does the federal government pay public schools to feed poor students at breakfast and lunch?” Though there is some psychology research tying nutrition to behavior and learning, the policy is based on much broader expectations of schools. In this case, “Children learn better if they are well-fed” both is based on research and also is an incomplete answer.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2013
385-Thumbnail Image.png
Description

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for

The current debate over graduate rate calculations and results has glossed over the relationship between student migration and the accuracy of various graduation rates proposed over the past five years. Three general grade-based graduation rates have been proposed recently, and each has a parallel version that includes an adjustment for migration, whether international, internal to the U.S., or between different school sectors. All of the adjustment factors have a similar form, allowing simulation of estimates from real data, assuming different unmeasured net migration rates. In addition, a new age-based graduation rate, based on mathematical demography, allows the simulation of estimates on a parallel basis using data from Virginia's public schools.

Both the direct analysis and simulation demonstrate that graduation rates can only be useful with accurate information about student migration. A discussion of Florida's experiences with longitudinal cohort graduation rates highlights some of the difficulties with the current status of the oldest state databases and the need for both technical confidence and definitional clarity. Meeting the No Child Left Behind mandates for school-level graduation rates requires confirmation of transfers and an audit of any state system for accuracy, and basing graduation rates on age would be a significant improvement over rates calculated using grade-based data.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2009
386-Thumbnail Image.png
Description

Analysis of newly-released data from the Florida Department of Education suggests that commonly-used proxies for high school graduation are generally weak predictors of the new federal rate.

ContributorsDorn, Sherman (Author) / Mary Lou Fulton Teachers College (Contributor)
Created2012
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
129393-Thumbnail Image.png
Description

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon”

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon” material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

ContributorsBuczkowski, D. L. (Author) / Wyrick, D.Y. (Author) / Toplis, M. (Author) / Yingst, R. A. (Author) / Williams, David (Author) / Garry, W. B. (Author) / Mest, S. (Author) / Kneissl, T. (Author) / Scully, J. E. C. (Author) / Nathues, A. (Author) / De Sanctis, M. C. (Author) / Le Corre, L. (Author) / Reddy, V. (Author) / Hoffmann, M. (Author) / Ammannito, E. (Author) / Frigeri, A. (Author) / Tosi, F. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Raymond, C. A. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-14
129395-Thumbnail Image.png
Description

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a protective atmosphere and consequently impact cratering and impact-related processes are prevalent. Previous work has shown that the formation of the Rheasilvia impact basin induced the equatorial Divalia Fossae, whereas the formation of the Veneneia impact basin induced the northern Saturnalia Fossae. Expanding upon this earlier work, we conducted photogeologic mapping of the Saturnalia Fossae, adjacent structures and geomorphic units in two of Vesta’s northern quadrangles: Caparronia and Domitia. Our work indicates that impact processes created and/or modified all mapped structures and geomorphic units. The mapped units, ordered from oldest to youngest age based mainly on cross-cutting relationships, are: (1) Vestalia Terra unit, (2) cratered highlands unit, (3) Saturnalia Fossae trough unit, (4) Saturnalia Fossae cratered unit, (5) undifferentiated ejecta unit, (6) dark lobate unit, (7) dark crater ray unit and (8) lobate crater unit. The Saturnalia Fossae consist of five separate structures: Saturnalia Fossa A is the largest (maximum width of ∼43 km) and is interpreted as a graben, whereas Saturnalia Fossa B-E are smaller (maximum width of ∼15 km) and are interpreted as half grabens formed by synthetic faults. Smaller, second-order structures (maximum width of <1 km) are distinguished from the Saturnalia Fossae, a first-order structure, by the use of the general descriptive term ‘adjacent structures’, which encompasses minor ridges, grooves and crater chains. For classification purposes, the general descriptive term ‘minor ridges’ characterizes ridges that are not part of the Saturnalia Fossae and are an order of magnitude smaller (maximum width of <1 km vs. maximum width of ∼43 km). Shear deformation resulting from the large-scale (diameter of <100 km) Rheasilvia impact is proposed to form minor ridges (∼2 km to ∼25 km in length), which are interpreted as the surface expression of thrust faults, as well as grooves (∼3 km to ∼25 km in length) and pit crater chains (∼1 km to ∼25 km in length), which are interpreted as the surface expression of extension fractures and/or dilational normal faults. Secondary crater material, ejected from small-scale and medium-scale impacts (diameters of <100 km), are interpreted to form ejecta ray systems of grooves and crater chains by bouncing and scouring across the surface. Furthermore, seismic shaking, also resulting from small-scale and medium-scale impacts, is interpreted to form minor ridges because seismic shaking induces flow of regolith, which subsequently accumulates as minor ridges that are roughly parallel to the regional slope. In this work we expand upon the link between impact processes and structural features on Vesta by presenting findings of a photogeologic, structural mapping study which highlights how impact cratering and impact-related processes are expressed on this unique, intermediate Solar System body.

ContributorsScully, Jennifer E. C. (Author) / Yin, A. (Author) / Russell, C. T. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Blewett, D. T. (Author) / Ruesch, O. (Author) / Hiesinger, H. (Author) / Le Corre, L. (Author) / Mercer, Cameron (Author) / Yingst, R. A. (Author) / Garry, W. B. (Author) / Jaumann, R. (Author) / Roatsch, T. (Author) / Preusker, F. (Author) / Gaskell, R.W. (Author) / Schroder, S.E. (Author) / Ammannito, E. (Author) / Pieters, C. M. (Author) / Raymond, C. A. (Author) / DREAM 9 AML-OPC Consortium (Contributor)
Created2014-01-29