This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

Description

(Preprint.) Today's college and university learning landscapes are dynamic and
characterized by increased student demand for highly flexible and self-paced online learning opportunities. Recent fiscal conditions in higher education make learning landscape development more challenging due to finite resources and competing priorities. Similarly, academic libraries are experiencing substantial budget and staff

(Preprint.) Today's college and university learning landscapes are dynamic and
characterized by increased student demand for highly flexible and self-paced online learning opportunities. Recent fiscal conditions in higher education make learning landscape development more challenging due to finite resources and competing priorities. Similarly, academic libraries are experiencing substantial budget and staff reductions. Despite these trends, academic libraries are in a strong position to contribute to surrounding learning landscapes by expanding student online learning opportunities and promoting the critical use of information. Evolving learning technologies available for free or at low cost provide higher education and libraries with the tools to respond to this fluid environment.

ContributorsKammerlocher, Lisa (Author) / Couture, Julianne (Author) / Sparks, Olivia (Author) / Harp, Matthew (Author) / Allgood, Tammy (Author)
Created2011
Description

Library One Search (Summon) Usability at ASU

ContributorsAllgood, Tammy (Author) / Kush, Jordyn (Author)
Created2015-11-06
Description

Conference Proceedings

ContributorsAllgood, Tammy (Author) / Gallegos, Bee (Author) / Grondin, Karen (Author)
Created2007-05-04
Description

Invited presenter for ALA Annual Conference, 2008.

ContributorsAllgood, Tammy (Author) / Duarte, Marisa (Author)
Created2008-06-20
Description

Quarantined: The Fletcher Library Game Project.

ContributorsAllgood, Tammy (Author)
Description

Leveraging Drupal for your business:
Use Drupal to power your business -- hear case studies and learn about adapting to open-source technology.

Libraries are growing into new joint entities -- the library as a place, and the library as a resource. Library websites serve as a resource, delivering tools for learning to

Leveraging Drupal for your business:
Use Drupal to power your business -- hear case studies and learn about adapting to open-source technology.

Libraries are growing into new joint entities -- the library as a place, and the library as a resource. Library websites serve as a resource, delivering tools for learning to patrons and students in an academic setting. Drupal is an ideal tool for facilitating the specialized tasks that many library developers have to complete.

In this session, attendees will learn about:
       1. Using the built-in architecture of Drupal 6 and Drupal 7 to meet the goals of library 
           websites.
       2. The 10 best modules for library websites.
       3. 10 recommended theming techniques for common library interfaces.
       4. New expectations of library websites as gathered from user surveys and usability
           studies.
       5. Example set-ups of Drupal sites for common library settings and staff organizations.
       6. Successful case studies of major library websites run on Drupal.
       7. Tips for useful library-specific usability studies with library users and students.

Attendees will come away from this session with a firm understanding of quality library sites as tools, and what many users are growing to expect. They will also learn how to set up a Drupal website for a library, and successful ways to meet the specific resource needs of their organizations.

The archived event website can be accessed here.

ContributorsAllgood, Tammy (Author)
Created2010-04-20
Description

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.

ContributorsDutta, Palash (Author) / Levenberg, Symon (Author) / Loskutov, Andrey (Author) / Jun, Daniel (Author) / Saer, Rafael (Author) / Beatty, J. Thomas (Author) / Lin, Su (Author) / Liu, Yan (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-11-26
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
Description

Limited to streaming only those videos a vendor hosted, ASU Libraries sought to expand collection options with a trial project for hosting content locally. Kaltura, was selected as the platform, but Kaltura does not work out of the box. This presentation will cover how using Drupal, along with Kaltura, we

Limited to streaming only those videos a vendor hosted, ASU Libraries sought to expand collection options with a trial project for hosting content locally. Kaltura, was selected as the platform, but Kaltura does not work out of the box. This presentation will cover how using Drupal, along with Kaltura, we built a working video hosting solution. The presentation will cover administrative hurdles, stumbling blocks, pitfalls, enhancements, and lessons learned along the way.

ContributorsHarp, Matthew (Author) / farrelly, deg (Author) / Kurtz, Jeremy (Author) / Allgood, Tammy (Author)
Created2012-06-25