This collection collates faculty and staff collections alphabetically by surname.

Displaying 1 - 10 of 215
Filtering by

Clear all filters

141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12
141489-Thumbnail Image.png
Description

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Results: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7–8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phage deep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks).

Conclusions: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact.

ContributorsKang, Dae Wook (Author) / Adams, James (Author) / Gregory, Ann C. (Author) / Borody, Thomas (Author) / Chittick, Lauren (Author) / Fasano, Alessio (Author) / Khoruts, Alexander (Author) / Geis, Elizabeth (Author) / Maldonado Ortiz, Juan (Author) / McDonough-Means, Sharon (Author) / Pollard, Elena (Author) / Roux, Simon (Author) / Sadowsky, Michael J. (Author) / Schwarzberg Lipson, Karen (Author) / Sullivan, Matthew B. (Author) / Caporaso, J. Gregory (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2017-01-23
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
Description

(Preprint.) Today's college and university learning landscapes are dynamic and
characterized by increased student demand for highly flexible and self-paced online learning opportunities. Recent fiscal conditions in higher education make learning landscape development more challenging due to finite resources and competing priorities. Similarly, academic libraries are experiencing substantial budget and staff

(Preprint.) Today's college and university learning landscapes are dynamic and
characterized by increased student demand for highly flexible and self-paced online learning opportunities. Recent fiscal conditions in higher education make learning landscape development more challenging due to finite resources and competing priorities. Similarly, academic libraries are experiencing substantial budget and staff reductions. Despite these trends, academic libraries are in a strong position to contribute to surrounding learning landscapes by expanding student online learning opportunities and promoting the critical use of information. Evolving learning technologies available for free or at low cost provide higher education and libraries with the tools to respond to this fluid environment.

ContributorsKammerlocher, Lisa (Author) / Couture, Julianne (Author) / Sparks, Olivia (Author) / Harp, Matthew (Author) / Allgood, Tammy (Author)
Created2011
Description

Library One Search (Summon) Usability at ASU

ContributorsAllgood, Tammy (Author) / Kush, Jordyn (Author)
Created2015-11-06
Description

Conference Proceedings

ContributorsAllgood, Tammy (Author) / Gallegos, Bee (Author) / Grondin, Karen (Author)
Created2007-05-04
Description

Invited presenter for ALA Annual Conference, 2008.

ContributorsAllgood, Tammy (Author) / Duarte, Marisa (Author)
Created2008-06-20
Description

Quarantined: The Fletcher Library Game Project.

ContributorsAllgood, Tammy (Author)
Description

Leveraging Drupal for your business:
Use Drupal to power your business -- hear case studies and learn about adapting to open-source technology.

Libraries are growing into new joint entities -- the library as a place, and the library as a resource. Library websites serve as a resource, delivering tools for learning to

Leveraging Drupal for your business:
Use Drupal to power your business -- hear case studies and learn about adapting to open-source technology.

Libraries are growing into new joint entities -- the library as a place, and the library as a resource. Library websites serve as a resource, delivering tools for learning to patrons and students in an academic setting. Drupal is an ideal tool for facilitating the specialized tasks that many library developers have to complete.

In this session, attendees will learn about:
       1. Using the built-in architecture of Drupal 6 and Drupal 7 to meet the goals of library 
           websites.
       2. The 10 best modules for library websites.
       3. 10 recommended theming techniques for common library interfaces.
       4. New expectations of library websites as gathered from user surveys and usability
           studies.
       5. Example set-ups of Drupal sites for common library settings and staff organizations.
       6. Successful case studies of major library websites run on Drupal.
       7. Tips for useful library-specific usability studies with library users and students.

Attendees will come away from this session with a firm understanding of quality library sites as tools, and what many users are growing to expect. They will also learn how to set up a Drupal website for a library, and successful ways to meet the specific resource needs of their organizations.

The archived event website can be accessed here.

ContributorsAllgood, Tammy (Author)
Created2010-04-20