The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 36
Filtering by

Clear all filters

Description

James Marion Sims developed a surgical cure for ruptures of the wall separating the bladder from the vagina during labor, ruptures called vesico-vaginal fistulas, and he developed techniques and tools used to improve reproductive examinations and health care for women in the US during the nineteenth century. Sims's lateral examination

James Marion Sims developed a surgical cure for ruptures of the wall separating the bladder from the vagina during labor, ruptures called vesico-vaginal fistulas, and he developed techniques and tools used to improve reproductive examinations and health care for women in the US during the nineteenth century. Sims's lateral examination position allowed doctors to better see the vaginal cavity, and his speculum, a spoon-like object used for increased view into the vagina, helped to make gynecological examinations more thorough. Sims helped ease the physical and social strains of post-birth women who suffered from vesico-vaginal fistulas, and he established the first hospital in New York City, New York, dedicated solely to treating women and improving women's health care.

Created2013-04-08
173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06
173232-Thumbnail Image.png
Description

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through the blastocyst stage just before it implants in the uterus. Embryonic stem cells are useful for experiments because they are self-renewing and able to develop into almost any cell type in the body. Martin later identified a key chemical component in limb development and continues to study embryogenesis, or the growth of embryos over time. Martin’s work on embryonic stem cells has allowed scientists to further research and treat human diseases, and her study of how organs form has helped scientists learn about the healthy growth of embryos.

Created2019-07-31
173298-Thumbnail Image.png
Description

NovaSure is a device for endometrial ablation, which is a procedure that removes the endometrium, that the US Food and Drug Administration, or FDA, approved for use on 28 September 2001. Endometrium is the tissue that lines the uterus. NovaSure destroys the endometrium by sending electric beams at the endometrium.

NovaSure is a device for endometrial ablation, which is a procedure that removes the endometrium, that the US Food and Drug Administration, or FDA, approved for use on 28 September 2001. Endometrium is the tissue that lines the uterus. NovaSure destroys the endometrium by sending electric beams at the endometrium. Hologic, a medical technology company concerned with women’s health, developed NovaSure to treat menorrhagia, or heavy bleeding during menstruation. Menorrhagia is a common symptom of endometriosis. Endometriosis is the growth of the endometrium outside of the uterus. While NovaSure is not a treatment that doctors use to directly treat endometriosis, the procedure may help alleviate heavy bleeding during menstruation, which may improve a patient’s quality of life as heavy menstrual bleeding is often associated with high levels of anxiety and low levels of confidence.

Created2019-09-20
173454-Thumbnail Image.png
Description

Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another

Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another egg that had its nucleus removed. Mitochondria are organelles found in all cells and contain some of the cell’s genetic material. Mutations in the mitochondrial DNA can lead to neurodegenerative and muscle diseases. Mitalipov and Tachibana used spindle replacement to produce healthy offspring from an egg with mutated mitochondria in rhesus macaques (Macaca mulatta). The experiment showed that spindle transfer eliminated the chance of transmission of mitochondrial diseases from the affected primates to their offspring, offering the potential to eliminate mitochondrial diseases in humans.

Created2018-01-10
173273-Thumbnail Image.png
Description

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations. Mitalipov and Tachibana, researchers at the Oregon National Primate Research Center in Beaverton, Oregon, developed a technique to remove the nucleus of the mother and place it in a donor oocyte, or immature egg cell, with healthy mitochondria. The resulting offspring contain the genetic material of three separate individuals and do not have the disease. Mitalipov and Tachibana's technology of mitochondrial gene replacement built on decades of research by different scientists and enables researchers to prevent the transmission of human mitochondrial diseases from mother to offspring.

Created2017-09-06
173352-Thumbnail Image.png
Description

The Martius flap procedure is a surgical procedure used to treat obstetric fistulas in women. Heinrich Martius developed the procedure in twentieth century Germany to treat women with urinary incontinence caused by stress, and later doctors used it to repair obstetric fistulas. Fistulas occur in pregnant women when a hole

The Martius flap procedure is a surgical procedure used to treat obstetric fistulas in women. Heinrich Martius developed the procedure in twentieth century Germany to treat women with urinary incontinence caused by stress, and later doctors used it to repair obstetric fistulas. Fistulas occur in pregnant women when a hole is torn between the vagina and the urinary tract (called vesicovaginal) or the vagina and the rectum (called rectovaginal). The hole, or fistula, occurs in the tissue separating two organs and therefore obstetric fistulas result in either urinary or fecal incontinence. Fistulas can occur due to surgery, injury, or chemotherapy, but they most commonly occur in pregnant women who experience prolonged labor and do not have adequate access to obstetric care. As a result of the Martius flap procedure, patients regain functional use of their vaginas without continued urinary or fecal incontinence.

Created2017-04-10
173384-Thumbnail Image.png
Description

Starting in 1929, the Royal College of Obstetricians and Gynaecologists was a professional association of physicians in the UK that aimed to improve the care of women in childbirth through training and education and to establish obstetrics and gynecology as a medical specialty. The Royal College of Obstetricians and Gynaecologists

Starting in 1929, the Royal College of Obstetricians and Gynaecologists was a professional association of physicians in the UK that aimed to improve the care of women in childbirth through training and education and to establish obstetrics and gynecology as a medical specialty. The Royal College of Obstetricians and Gynaecologists has contributed to women’s reproductive health by fostering research, establishing standards for physicians specializing in obstetrics and gynecology, and influencing legislation.

Created2017-05-29
173114-Thumbnail Image.png
Description

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells,

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.

Created2021-08-04