The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06
173232-Thumbnail Image.png
Description

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through the blastocyst stage just before it implants in the uterus. Embryonic stem cells are useful for experiments because they are self-renewing and able to develop into almost any cell type in the body. Martin later identified a key chemical component in limb development and continues to study embryogenesis, or the growth of embryos over time. Martin’s work on embryonic stem cells has allowed scientists to further research and treat human diseases, and her study of how organs form has helped scientists learn about the healthy growth of embryos.

Created2019-07-31
173296-Thumbnail Image.png
Description

Fortunio Liceti studied natural philosophy and medicine in Italy during the first half of the seventeenth century. Liceti wrote greater than seventy works on a wide range of topics, including the human soul, reproduction, and birth defects observed in animals and human infants. In the seventeenth century, people commonly addressed

Fortunio Liceti studied natural philosophy and medicine in Italy during the first half of the seventeenth century. Liceti wrote greater than seventy works on a wide range of topics, including the human soul, reproduction, and birth defects observed in animals and human infants. In the seventeenth century, people commonly addressed birth defects using superstition and considered them as signs of evil, possibly caused by spiritual or supernatural entities. Liceti described infants with birth defects as prodigies and monsters to be admired and studied rather than feared. Liceti’s works established monsters as a possible subject of scientific inquiry and served as models for the future study of birth defects, a field later called teratology. Liceti was one of the first scholars to attempt to systematically categorize birth defects based on their causes, including multiple causes unrelated to the supernatural.

Created2018-06-25
173454-Thumbnail Image.png
Description

Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another

Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another egg that had its nucleus removed. Mitochondria are organelles found in all cells and contain some of the cell’s genetic material. Mutations in the mitochondrial DNA can lead to neurodegenerative and muscle diseases. Mitalipov and Tachibana used spindle replacement to produce healthy offspring from an egg with mutated mitochondria in rhesus macaques (Macaca mulatta). The experiment showed that spindle transfer eliminated the chance of transmission of mitochondrial diseases from the affected primates to their offspring, offering the potential to eliminate mitochondrial diseases in humans.

Created2018-01-10
173273-Thumbnail Image.png
Description

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations. Mitalipov and Tachibana, researchers at the Oregon National Primate Research Center in Beaverton, Oregon, developed a technique to remove the nucleus of the mother and place it in a donor oocyte, or immature egg cell, with healthy mitochondria. The resulting offspring contain the genetic material of three separate individuals and do not have the disease. Mitalipov and Tachibana's technology of mitochondrial gene replacement built on decades of research by different scientists and enables researchers to prevent the transmission of human mitochondrial diseases from mother to offspring.

Created2017-09-06
173114-Thumbnail Image.png
Description

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells,

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.

Created2021-08-04
172715-Thumbnail Image.png
Description

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment begins within the first three months of the newborn's life. In the early 1970s, regions in Canada and the US had implemented screening programs to diagnose and treat CH as quickly as possible after the infant's birth. By 1991 many other countries had adopted the early screening program, and Fisher estimated that 10 to 12 million newborns per year were tested in the early 1990s. The screening programs, along with physician education and improved screening techniques, such as radioimmunoassay, helped significantly reduce the incidence of abnormal newborn development resulting from untreated congenital hypothyroidism.

Created2013-12-31
172734-Thumbnail Image.png
Description

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological Society of Australia. In the article, Gregg analyzed seventy-eight cases of congenital cataracts and suggested that the mothers' environmental factors could cause birth defects, otherwise known as teratogenic effects. Gregg's paper on the teratogenic effects of an environmental agent, the rubella virus, changed the study of birth defects to include viruses as potential causes or teratogens.

Created2013-12-31
172742-Thumbnail Image.png
Description

Fetal surgeries are a range of medical interventions performed in utero on the developing fetus of a pregnant woman to treat a number of congenital abnormalities. The first documented fetal surgical procedure occurred in 1963 in Auckland, New Zealand when A. William Liley treated fetal hemolytic anemia, or Rh disease,

Fetal surgeries are a range of medical interventions performed in utero on the developing fetus of a pregnant woman to treat a number of congenital abnormalities. The first documented fetal surgical procedure occurred in 1963 in Auckland, New Zealand when A. William Liley treated fetal hemolytic anemia, or Rh disease, with a blood transfusion. Three surgical techniques comprise many fetal surgeries: hysterotomy, or open abdominal surgery performed on the woman; fetoscopy, for which doctors use a fiber-optic endoscope to view and make repairs to abnormalities in the fetus; and percutaneous fetal theray, for which doctors use a catheter to drain excess fluid. As the sophistication of surgical and neonatal technology advanced in the late twentieth century, so too did the number of congenital disorders fetal surgeons treated, such as mylomeningeocele, blocked urinary tracts, twin-to-twin transfusion syndrome, polyhydramnios, diaphragmatic hernia, tracheal occlusion, and other anomalies. Many discuss the ethics of fetal surgery, as many consider it contentious, as fetal surgery risks both the developing fetus and the pregnant woman, and at times it only marginally improves patient outcomes. Some argue, however, that as more advanced diagnostic equipment and surgical methods improve, advanced clinical trials in a few conditions may demonstrate more benefits than risks to both pregnant women and fetuses.

Created2012-11-01