This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153099-Thumbnail Image.png
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Wang, Qing Hua (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
157691-Thumbnail Image.png
Description
Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability.

The robustness of a neural network

Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability.

The robustness of a neural network is defined as the stability of the network output under small input perturbations. It has been shown that neural networks are very sensitive to input perturbations, and the prediction from convolutional neural networks can be totally different for input images that are visually indistinguishable to human eyes. Based on such property, hackers can reversely engineer the input to trick machine learning systems in targeted ways. These adversarial attacks have shown to be surprisingly effective, which has raised serious concerns over safety-critical applications like autonomous driving. In the meantime, many established defense mechanisms have shown to be vulnerable under more advanced attacks proposed later, and how to improve the robustness of neural networks is still an open question.

The generalizability of neural networks refers to the ability of networks to perform well on unseen data rather than just the data that they were trained on. Neural networks often fail to carry out reliable generalizations when the testing data is of different distribution compared with the training one, which will make autonomous driving systems risky under new environment. The generalizability of neural networks can also be limited whenever there is a scarcity of training data, while it can be expensive to acquire large datasets either experimentally or numerically for engineering applications, such as material and chemical design.

In this dissertation, we are thus motivated to improve the robustness and generalizability of neural networks. Firstly, unlike traditional bottom-up classifiers, we use a pre-trained generative model to perform top-down reasoning and infer the label information. The proposed generative classifier has shown to be promising in handling input distribution shifts. Secondly, we focus on improving the network robustness and propose an extension to adversarial training by considering the transformation invariance. Proposed method improves the robustness over state-of-the-art methods by 2.5% on MNIST and 3.7% on CIFAR-10. Thirdly, we focus on designing networks that generalize well at predicting physics response. Our physics prior knowledge is used to guide the designing of the network architecture, which enables efficient learning and inference. Proposed network is able to generalize well even when it is trained with a single image pair.
ContributorsYao, Houpu (Author) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2019