This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 93
152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
ContributorsHunt, Katherine (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Robert, Jason S. (Thesis advisor) / Maienschein, Jane (Committee member) / Northfelt, Donald W. (Committee member) / Marchant, Gary (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152351-Thumbnail Image.png
Description
Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude

Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude toward lung cancer stems from unacknowledged moral judgments that generate 'stigma.' The campaign materials are meant to expose and challenge these common public category-making processes that occur when subconsciously evaluating lung cancer patients. These processes involve comparison, perception of difference, and exclusion. The campaign implies that society sees suffering of lung cancer patients as indicative of moral failure, thus, not warranting assistance from society, which leads to marginalization of the diseased. Attributing to society a morally laden view of the disease, the campaign extends this view to its logical end and makes it explicit: lung cancer patients no longer deserve to live because they themselves caused the disease (by smoking). This judgment and resulting marginalization is, according to LCA, evident in the ways lung cancer patients are marginalized relative to other diseases via minimal research funding, high- mortality rates and low awareness of the disease. Therefore, society commits an injustice against those with lung cancer. This research analyzes the relationship between disease, identity-making, and responsibilities within society as represented by this stigma framework. LCA asserts that society understands lung cancer in terms of stigma, and advocates that society's understanding of lung cancer should be shifted from a stigma framework toward a medical framework. Analysis of identity-making and responsibility encoded in both frameworks contributes to evaluation of the significance of reframing this disease. One aim of this thesis is to explore the relationship between these frameworks in medical sociology. The results show a complex interaction that suggest trading one frame for another will not destigmatize the lung cancer patient. Those interactions cause tangible harms, such as high mortality rates, and there are important implications for other communities that experience a stigmatized disease.
ContributorsCalvelage, Victoria (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152926-Thumbnail Image.png
Description
Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies

Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies suggest that if educators engage with students' religious beliefs and identity, this may help students have positive attitudes towards evolution. The aim of this study was to reveal attitudes and beliefs professors have about addressing religion and providing religious scientist role models to students when teaching evolution. 15 semi-structured interviews of tenured biology professors were conducted at a large Midwestern universiy regarding their beliefs, experiences, and strategies teaching evolution and particularly, their willingness to address religion in a class section on evolution. Following a qualitative analysis of transcripts, professors did not agree on whether or not it is their job to help students accept evolution (although the majority said it is not), nor did they agree on a definition of "acceptance of evolution". Professors are willing to engage in students' religious beliefs, if this would help their students accept evolution. Finally, professors perceived many challenges to engaging students' religious beliefs in a science classroom such as the appropriateness of the material for a science class, large class sizes, and time constraints. Given the results of this study, the author concludes that instructors must come to a consensus about their goals as biology educators as well as what "acceptance of evolution" means, before they can realistically apply the engagement of student's religious beliefs and identity as an educational strategy.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara E (Thesis advisor) / Brem, Sarah K. (Thesis advisor) / Lynch, John M. (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2014
153495-Thumbnail Image.png
Description
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the

Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software.

The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
ContributorsSong, Pengchao (Author) / Mignolet, Marc P (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014
153327-Thumbnail Image.png
Description
Monte Carlo simulations are traditionally carried out for the determination of the amplification of forced vibration response of turbomachine/jet engine blades to mistuning. However, this effort can be computationally time consuming even when using the various reduced order modeling techniques. Accordingly, some investigations in the past have focused on obtaining

Monte Carlo simulations are traditionally carried out for the determination of the amplification of forced vibration response of turbomachine/jet engine blades to mistuning. However, this effort can be computationally time consuming even when using the various reduced order modeling techniques. Accordingly, some investigations in the past have focused on obtaining simple approximate estimates for this amplification. In particular, two of these have proposed the use of harmonic patterns of the blade properties around the disk as an approximate alternative to the many random patterns of Monte Carlo analyses. These investigations, while quite encouraging, have relied solely on single degree of freedom per sector models of the rotor.

In this light, the overall focus of the present effort is a revisit of harmonic

mistuning of rotors focusing first the confirmation of the previously obtained findings with a more detailed model of the blisk in both conditions of an isolated blade-dominated resonance and of a veering between blade and disk dominated modes. The latter condition cannot be simulated by a single degree of freedom per sector model. Further, the analysis will consider the distinct cases of mistuning due to variations of material properties (Young's modulus) and geometric properties (geometric mistuning). In the single degree of freedom model, both mistuning types are equivalent but they are not, as demonstrated here, in more realistic models. The difference arises because changes in geometry induce not only changes in natural frequencies of the blades alone but of their modes and the importance of these two sources of variability is discussed with both Monte Carlo simulation and harmonic mistuning results.

The present investigation focuses also on the possible extension of the harmonic mistuning concept and of its quantitative information that can be derived from such analyses. From it, a novel measure of blade-disk coupling is introduced and assessed in comparison with the coupling index introduced in the past. In conclusions, the low cost of harmonic mistuning computations in comparison with full Monte Carlo simulations is

demonstrated to be worthwhile to elucidate the basic behavior of the mistuned rotor in a random setting.
ContributorsSahoo, Saurav (Author) / Mignolet, Marc Paul (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2014
153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
153099-Thumbnail Image.png
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014