This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 183
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152134-Thumbnail Image.png
Description
Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant,

Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant, expressing my mother's cheerful personality when she was alive. It also portrays bright summer days which resemble my mother's spirit. Thus, soundscape plays an important role in this work. It depicts summer breeze, rustling sounds of leaves, and, to translate a Korean saying, "high blue skies." This soundscape opens the piece as well as closes it. In the middle section, the fast upbeat themes represent my mother's witty and optimistic personality. The piece also contains the presence of a hymn tune, The Love of God is Greater Far, which informs the motivic content and also functions as the climax of the piece. It was my mother's favorite hymn and we used to sing it together following her conversion to Christianity. The piece contains three main sections, which are held together by transitional material based on the soundscape and metric modulations. Unlike my earlier works, Bright Summer is tonal, with upper tertian harmonies prevailing throughout the piece. However, the opening and closing soundscapes do not have functional harmonies. For example, tertian chords appear and vanish silently, leaving behind some resonant sounds without any harmonic progression. Overall, the whole piece is reminiscent of my mother who lived a beautiful life.
ContributorsKim, JeeYeon (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Rogers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
151773-Thumbnail Image.png
Description
Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines

Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines the factors that influence Gjeilo's compositional techniques, and the musical interpretations of conductor Charles Bruffy in his preparation for The Phoenix Chorale's recording Northern Lights: Choral Works by Ola Gjeilo. The eleven works discussed in this study are: The Ground, Evening Prayer, Ubi caritas, Prelude, Northern Lights, The Spheres, Tota pulchra es, Serenity, Phoenix (Agnus Dei), Unicornis captivatur, and Dark Night of the Soul. As a relatively new and young composer, there is very little published literature on Gjeilo and his works. This study provides an intimate glance into the creative process of the composer. By composing in multiple styles and with a variety of inspirational sources, Gjeilo creates a fresh approach toward composition of new choral music. His style is revealed through interviews and numerous collaborations with conductors and performers who have prepared and performed his music, as well through an examination of the eleven works recorded by The Phoenix Chorale.
ContributorsGarrison, Ryan Derrick (Author) / Reber, William (Thesis advisor) / Saucier, Catherine (Committee member) / Rockmaker, Jody (Committee member) / Doan, Jerry (Committee member) / Arizona State University (Publisher)
Created2013
151610-Thumbnail Image.png
Description
This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard

This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard Peaslee and his work accompanies this new arrangement, along with commentary on the orchestration of "Arrows of Time", and discussion of the evolution and adaptation of the work for wind ensemble by Dr. Hauser. The methodology used to adapt these versions for the brass band completes the background information.
ContributorsMalloy, Jason Patrick (Author) / Ericson, John (Thesis advisor) / Oldani, Robert (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152405-Thumbnail Image.png
Description
The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have

The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have focused primarily on his simpler, more melodic works. Conventional wisdom is that his music is "too dense" to be played on the guitar. As a result, there are no arrangements of orchestral works by Brahms in the standard repertoire for the guitar. In arranging Brahms's Serenade in D Major, movt. 1 for the guitar, I provide a counter argument that not all of Brahms's orchestral music is too dense all of the time. In Part I, I provide a brief overview of the history of, and sources for, the Serenade. Part II describes a step-by-step guide through the process of arranging orchestral repertoire for the solo guitar. Part III is an examination of the editing process that utilizes examples from the guitar arrangement of the Serenade in order to illustrate the various techniques and considerations that are part of the editing process. Part IV is a performance edition of the arrangement. In summary, the present arrangement of Brahms's Serenade, op.11 is the beginning of a conversation about why the "guitar world" should be incorporating the music of Brahms into the standard repertoire. The lessons learned, and the technical challenges discovered, should help inform future arrangers and guitar performers for additional compositions by Brahms.
ContributorsLanier, William Hudson (Author) / Koonce, Frank (Thesis advisor) / Micklich, Albie (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152555-Thumbnail Image.png
Description
Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years

Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years for treason and terrorist activities against the South African apartheid regime: he was assigned prison numbers 46664. In 1992, Mandela was released from prison and two years later not only became the first democratically elected president of South Africa, but also its first black president. "Madiba 46664" is an eight-minute chamber work scored for flute, oboe, clarinet in B-flat, and bassoon; vibraphone, and two percussionists; piano; violins, violas, and celli. The work blends traditional South African rhythms of the drumming culture with elements of Western harmony and form in contrasting textures of homophony, polyphony and antiphony. "Madiba 46664" utilizes Mandela's prison number, birthdate and age (at the time the composition process began in 2013) for the initial generation of meter, rhythm, harmony, melody, and form. The work also shares intercultural concepts that can be seen in the works of three contemporary African composers, South Africans Jeanne Zaidel-Rudolph and Andile Khumalo, and Nigerian Ayo Oluranti. Each section represents a period of Mandela's life as a freedom fighter, a prisoner, and a president. The inspiration stems from the composer's discussions with Mandela soon after his release from prison and prior to his presidency. These lively discussions pertained to the state of traditional music in then apartheid South Africa and led to this creation. The conversations also played a role in the creative process.
ContributorsMabingnai, Collette Sipho (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Humphreys, Jere (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2014
152754-Thumbnail Image.png
Description
Preservation Symphony is a short, multi-movement, orchestral composition that explores the versatility of the [016] pitch class set as the dominant unifying force of this cyclical work. The composition is scored for Piccolo, two Flutes, two Oboes, English Horn, two Clarinets, Bass Clarinet, full complement of Brass, Timpani, two Percussionists,

Preservation Symphony is a short, multi-movement, orchestral composition that explores the versatility of the [016] pitch class set as the dominant unifying force of this cyclical work. The composition is scored for Piccolo, two Flutes, two Oboes, English Horn, two Clarinets, Bass Clarinet, full complement of Brass, Timpani, two Percussionists, and Strings. Movement one is in sonata form; the [016] set is used in structuring its overall formal scheme. The primary focus of the movement is on the tritone [0 6] as a replacement for the traditional tonic and dominant polarity. The movement features a driving force that alternates between pulse subdivisions of even sixteenth notes and sixteenth-note triplets. Movement two is in simple binary form with a central tonality of A. An English Horn solo functions as both the opening of the movement and a transition from the tonality of movement one (F) into the new tonal center of A. The unifying pitch class set [016] is used in this movement in a Phrygian context. Movement two has a contemplative and dark tone, which is in stark contrast to the outer movements. Movement three has a lighter, upbeat nature. The movement is in rondo form with its main theme written in a folk-like character. This movement returns to F as the central tonality, completing the overall tonal plan of the work. As in movement one, it explores the tritone polarity of F and B. The movement also revisits the chromatic mediant relationship found in the middle of movement two in the oboes. The pitch class set is now used in the context of a Lydian-Mixolydian (or acoustic) scale, from which both the central and secondary themes of the rondo are derived.
ContributorsKemp, Tyler (Composer) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2014
152984-Thumbnail Image.png
Description
Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models of the musculoskeletal system can be used to make specific estimates of neuromuscular coordination and musculoskeletal forces. However, existing models cannot easily be used to describe complex, multi-finger gestures such as those used for multi-touch human computer interaction (HCI) tasks. We therefore seek to develop a dynamic musculoskeletal simulation capable of estimating internal musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and use the simulation to better understand complex multi-touch and gestural movements, and potentially guide the design of technologies the reduce injury risk. To accomplish these, we focused on three specific tasks. First, we aimed at determining the optimal index finger muscle attachment points within the context of the established, validated OpenSim arm model using measured moment arm data taken from the literature. Second, we aimed at deriving moment arm values from experimentally-measured muscle attachments and using these values to determine muscle-tendon paths for both extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at exploring differences in hand muscle activation patterns during zooming and rotating tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal hand model will help better address the neuromuscular coordination, safe gesture performance and internal loadings for multi-touch applications.
ContributorsYi, Chong-hwan (Author) / Jindrich, Devin L. (Thesis advisor) / Artemiadis, Panagiotis K. (Thesis advisor) / Phelan, Patrick (Committee member) / Santos, Veronica J. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014