This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 103
Filtering by

Clear all filters

152224-Thumbnail Image.png
Description
In this dissertation I attempt to find elements of education and curricular perspective in the Qur'an. I argue that there is little research in the field of curriculum instruction that discusses the Qur'an's educational aspects and, as a result, much ignorance of the Qur'an's material that deals with education and

In this dissertation I attempt to find elements of education and curricular perspective in the Qur'an. I argue that there is little research in the field of curriculum instruction that discusses the Qur'an's educational aspects and, as a result, much ignorance of the Qur'an's material that deals with education and curricular perspective in the Qur'an. Researchers may find many materials that deal with reading, memorizing, and reciting the Qur'an, along with references that deal with science and math in the Qur'an. Therefore, this dissertation answers the question: What curriculum exists within the Quran? This dissertation is divided into five chapters exploring various aspects of the curriculum. The word "curriculum" is used in one chapter to mean developing the person as a whole in all aspects of life whether spiritual, social, or mental while in the other chapter curriculum is used to refer to methods of instruction. I concluded that curriculum in the Qur'an uses different methods of instructions to develop the individual as a whole in all aspects of life while granting freedom of choice.
ContributorsRisha, Sarah (Author) / Margolis, Eric (Thesis advisor) / Fischman, Gustavo (Committee member) / Ali, Souad (Committee member) / Arizona State University (Publisher)
Created2013
152176-Thumbnail Image.png
Description
Buddhism is thriving in US-America, attracting many converts with college and post-graduate degrees as well as selling all forms of popular culture. Yet little is known about the communication dynamics behind the diffusion of Buddhist religious/spiritual traditions into the United States. Religion is an underexplored area of intercultural communication studies

Buddhism is thriving in US-America, attracting many converts with college and post-graduate degrees as well as selling all forms of popular culture. Yet little is known about the communication dynamics behind the diffusion of Buddhist religious/spiritual traditions into the United States. Religion is an underexplored area of intercultural communication studies (Nakayama & Halualani, 2010) and this study meets the lacuna in critical intercultural communication scholarship by investigating the communication practices of US-Americans adopting Asian Buddhist religious/spiritual traditions. Ethnographic observations were conducted at events where US-Americans gathered to learn about and practice Buddhist religious/spiritual traditions. In addition, interviews were conducted with US-Americans who were both learning and teaching Buddhism. The grounded theory method was used for data analysis. The findings of this study describe an emerging theory of the paracultural imaginary -- the space of imagining that one could be better than who one was today by taking on the cultural vestments of (an)Other. The embodied communication dynamics of intercultural exchange that take place when individuals adopt the rituals and philosophies of a foreign culture are described. In addition, a self-reflexive narrative of my struggle with the silence of witnessing the paracultural imaginary is weaved into the analysis. The findings from this study extend critical theorizing on cultural identity, performativity, and cultural appropriation in the diffusion of traditions between cultural groups. In addition, the study addresses the complexity of speaking out against the subtle prejudices in encountered in intercultural communication.
ContributorsWong, Terrie Siang-Ting (Author) / de la Garza, Sarah Amira (Thesis advisor) / Margolis, Eric (Committee member) / Budruk, Megha (Committee member) / Chen, Vivian Hsueh-Hua (Committee member) / Arizona State University (Publisher)
Created2013
152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
151962-Thumbnail Image.png
Description
This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10

This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10 individuals in the Southwest region of the United States. Data was coded in accordance with grounded theory methods. Motivation themes that emerged from the data centered around either initiating training for triathlon as an approach toward a specific goal or outcome, or beginning triathlon as a way to cope with personal difficulties. Obstacles to motivation also emerged, such as finances and time, injury, fear and doubt, and interpersonal difficulties. Persistence themes emerged that centered around either taking active steps to help continue training and relying on internal traits or characteristics to promote persistence. Data are discussed in terms of how these individuals adopt triathlon as a part of their lifestyle and identity, and how they come to persist in training beyond IRONMAN.
ContributorsLiddell, T. Michael (Author) / Claiborn, Charles (Thesis advisor) / Kinnier, Richard (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2013
151779-Thumbnail Image.png
Description
Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical

Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical characteristics and render the nameplate data insufficient in determining a module's overall, actual field performance. To make sound technical and financial decisions, designers and investors need additional performance data to determine the energy produced by modules operating under various field conditions. The angle of incidence (AOI) of sunlight on PV modules is one of the major parameters which dictate the amount of light reaching the solar cells. The experiment was carried out at the Arizona State University- Photovoltaic Reliability Laboratory (ASU-PRL). The data obtained was processed in accordance with the IEC 61853-2 model to obtain relative optical response of the modules (response which does not include the cosine effect). The results were then compared with theoretical models for air-glass interface and also with the empirical model developed by Sandia National Laboratories. The results showed that all modules with glass as the superstrate had identical optical response and were in agreement with both the IEC 61853-2 model and other theoretical and empirical models. The performance degradation of module over years of exposure in the field is dependent upon factors such as environmental conditions, system configuration, etc. Analyzing the degradation of power and other related performance parameters over time will provide vital information regarding possible degradation rates and mechanisms of the modules. An extensive study was conducted by previous ASU-PRL students on approximately 1700 modules which have over 13 years of hot- dry climatic field condition. An analysis of the results obtained in previous ASU-PRL studies show that the major degradation in crystalline silicon modules having glass/polymer construction is encapsulant discoloration (causing short circuit current drop) and solder bond degradation (causing fill factor drop due to series resistance increase). The power degradation for crystalline silicon modules having glass/glass construction was primarily attributed to encapsulant delamination (causing open-circuit voltage drop).
ContributorsVasantha Janakeeraman, Suryanarayana (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
151320-Thumbnail Image.png
Description
In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological

In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological practices of Michel Foucault's archeological and genealogical work to write a "history of the present." I challenge the essential narrative of physical fitness on college and university campuses. I also discuss nineteenth century notions of ethics and masculinity as a way of understanding twenty-first century ethics and masculinity. Ultimately, I use the historical discourse to argue that institutionalization of recreation and fitness centers and activities have less to do with health and well-being and more to do with disciplining bodies and controlling individuals.
ContributorsWells, Timothy (Author) / Carlson, David L. (Thesis advisor) / Sandlin, Jennifer (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151368-Thumbnail Image.png
Description
In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's

In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's (1986) interpretive, participant observational fieldwork method was used to report data by means of detailed descriptions of the research experience and classroom implementation. Data was collected from teacher documents, interviews, and observations. The findings revealed various factors that were responsible for an ineffective implementation of the research experience in the classroom such as research experience, curriculum support, availability of resources, and school curriculum. Implications and recommendations for future programs are discussed in the study.
ContributorsSen, Tapati (Author) / Baker, Dale (Thesis advisor) / Culbertson, Robert (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
151374-Thumbnail Image.png
Description
ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year

ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kWdc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kWac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
ContributorsOlakonu, Kolapo (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012