This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 208
Filtering by

Clear all filters

150046-Thumbnail Image.png
Description
This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation

This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation awareness. CyberCog provides an interactive environment for conducting human-in-loop experiments in which the participants of the experiment perform the tasks of a cyber security defense analyst in response to a cyber-attack scenario. CyberCog generates the necessary performance measures and interaction logs needed for measuring individual and team cyber situation awareness. Moreover, the CyberCog environment provides good experimental control for conducting effective situation awareness studies while retaining realism in the scenario and in the tasks performed.
ContributorsRajivan, Prashanth (Author) / Femiani, John (Thesis advisor) / Cooke, Nancy J. (Thesis advisor) / Lindquist, Timothy (Committee member) / Gary, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
149714-Thumbnail Image.png
Description
This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the communication process, and the channel i.e. the media via which communication takes place. Communication dynamics have been of interest to researchers from multi-faceted domains over the past several decades. However, today we are faced with several modern capabilities encompassing a host of social media websites. These sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information, our modes of social engagement, and mechanisms of how the media characteristics impact our interactional behavior. The outcomes of this research are manifold. We present our contributions in three parts, corresponding to the three key organizing ideas. First, we have observed that user context is key to characterizing communication between a pair of individuals. However interestingly, the probability of future communication seems to be more sensitive to the context compared to the delay, which appears to be rather habitual. Further, we observe that diffusion of social actions in a network can be indicative of future information cascades; that might be attributed to social influence or homophily depending on the nature of the social action. Second, we have observed that different modes of social engagement lead to evolution of groups that have considerable predictive capability in characterizing external-world temporal occurrences, such as stock market dynamics as well as collective political sentiments. Finally, characterization of communication on rich media sites have shown that conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Based on all these outcomes, we believe that this research can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.
ContributorsDe Choudhury, Munmun (Author) / Sundaram, Hari (Thesis advisor) / Candan, K. Selcuk (Committee member) / Liu, Huan (Committee member) / Watts, Duncan J. (Committee member) / Seligmann, Doree D. (Committee member) / Arizona State University (Publisher)
Created2011
150067-Thumbnail Image.png
Description
The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems:

The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems: 1) lack of visibility (parts and tools were difficult to identify), 2) high memory demands, and 3) insufficient user feedback. In an effort to improve completion rate and eliminate error, cognitive aids were designed utilizing human factors principles that would replace existing manufacturer visual aids. Then, a usability test was conducted, which compared the endoscope reprocessing performance of novices using the standard manufacturer-provided visual aids and the new cognitive aids. Participants successfully completed 87.1% of the reprocessing procedure in the experimental condition with the use of the cognitive aids, compared to 46.3% in the control condition using only existing support materials. Twenty-five of sixty subtasks showed significant improvement in completion rates. When given a cognitive aid designed with human factors principles, participants were able to more successfully complete the reprocessing task. This resulted in an endoscope that was more likely to be safe for patient use.
ContributorsJolly, Jonathan D (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
150174-Thumbnail Image.png
Description
Internet sites that support user-generated content, so-called Web 2.0, have become part of the fabric of everyday life in technologically advanced nations. Users collectively spend billions of hours consuming and creating content on social networking sites, weblogs (blogs), and various other types of sites in the United States and around

Internet sites that support user-generated content, so-called Web 2.0, have become part of the fabric of everyday life in technologically advanced nations. Users collectively spend billions of hours consuming and creating content on social networking sites, weblogs (blogs), and various other types of sites in the United States and around the world. Given the fundamentally emotional nature of humans and the amount of emotional content that appears in Web 2.0 content, it is important to understand how such websites can affect the emotions of users. This work attempts to determine whether emotion spreads through an online social network (OSN). To this end, a method is devised that employs a model based on a general threshold diffusion model as a classifier to predict the propagation of emotion between users and their friends in an OSN by way of mood-labeled blog entries. The model generalizes existing information diffusion models in that the state machine representation of a node is generalized from being binary to having n-states in order to support n class labels necessary to model emotional contagion. In the absence of ground truth, the prediction accuracy of the model is benchmarked with a baseline method that predicts the majority label of a user's emotion label distribution. The model significantly outperforms the baseline method in terms of prediction accuracy. The experimental results make a strong case for the existence of emotional contagion in OSNs in spite of possible alternative arguments such confounding influence and homophily, since these alternatives are likely to have negligible effect in a large dataset or simply do not apply to the domain of human emotions. A hybrid manual/automated method to map mood-labeled blog entries to a set of emotion labels is also presented, which enables the application of the model to a large set (approximately 900K) of blog entries from LiveJournal.
ContributorsCole, William David, M.S (Author) / Liu, Huan (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Candan, Kasim S (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150226-Thumbnail Image.png
Description
As the information available to lay users through autonomous data sources continues to increase, mediators become important to ensure that the wealth of information available is tapped effectively. A key challenge that these information mediators need to handle is the varying levels of incompleteness in the underlying databases in terms

As the information available to lay users through autonomous data sources continues to increase, mediators become important to ensure that the wealth of information available is tapped effectively. A key challenge that these information mediators need to handle is the varying levels of incompleteness in the underlying databases in terms of missing attribute values. Existing approaches such as Query Processing over Incomplete Autonomous Databases (QPIAD) aim to mine and use Approximate Functional Dependencies (AFDs) to predict and retrieve relevant incomplete tuples. These approaches make independence assumptions about missing values--which critically hobbles their performance when there are tuples containing missing values for multiple correlated attributes. In this thesis, I present a principled probabilis- tic alternative that views an incomplete tuple as defining a distribution over the complete tuples that it stands for. I learn this distribution in terms of Bayes networks. My approach involves min- ing/"learning" Bayes networks from a sample of the database, and using it do both imputation (predict a missing value) and query rewriting (retrieve relevant results with incompleteness on the query-constrained attributes, when the data sources are autonomous). I present empirical studies to demonstrate that (i) at higher levels of incompleteness, when multiple attribute values are missing, Bayes networks do provide a significantly higher classification accuracy and (ii) the relevant possible answers retrieved by the queries reformulated using Bayes networks provide higher precision and recall than AFDs while keeping query processing costs manageable.
ContributorsRaghunathan, Rohit (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2011
150235-Thumbnail Image.png
Description
Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based local measures for assessing source quality. These local measures are

Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based local measures for assessing source quality. These local measures are necessary but not sufficient as they are agnostic to source trustworthiness and result importance, which, given the autonomous and uncurated nature of deep-web, have become indispensible for searching deep-web. SourceRank provides a global measure for assessing source quality based on source trustworthiness and result importance. SourceRank's effectiveness has been evaluated in single-topic deep-web environments. The goal of the thesis is to extend sourcerank to a multi-topic deep-web environment. Topic-sensitive sourcerank is introduced as an effective way of extending sourcerank to a deep-web environment containing a set of representative topics. In topic-sensitive sourcerank, multiple sourcerank vectors are created, each biased towards a representative topic. At query time, using the topic of query keywords, a query-topic sensitive, composite sourcerank vector is computed as a linear combination of these pre-computed biased sourcerank vectors. Extensive experiments on more than a thousand sources in multiple domains show 18-85% improvements in result quality over Google Product Search and other existing methods.
ContributorsJha, Manishkumar (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011