This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

152692-Thumbnail Image.png
Description
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications.
ContributorsDing, Kang (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Palais, Joseph (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014
150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150852-Thumbnail Image.png
Description
Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were

Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were demonstrated. In the ECS NWs part, systematic experiments were performed to investigate the relation between growth temperature and NWs structure. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence characterization were used to study the NWs morphology, crystal quality and optical properties. At low growth temperature, there was strong Si Raman signal observed indicating ECS NWs have Si core. At high growth temperature, the excess Si signal was disappeared and the NWs showed better crystal quality and optical properties. The growth temperature is the key parameter that will induce the transition from Si/ECS core-shell NWs structure to solid ECS NWs. With the merits of high Er concentration and long PL lifetime, ECS NWs can serve as optical gain material with emission at 1.5 μm for communications and amplifiers. In the CdS, CdSSe NWs part, the band gap engineering of CdSSe NWs with spatial composition tuning along single NWs were demonstrated. The first step of realizing CdSSe NWs was the controlled growth of CdS NWs. It showed that overall pressure would largely affect the lengths of the CdS NWs. NWs with longer length can be obtained at higher pressure. Then, based on CdS NWs growth and by adding CdSe step by step, composition graded CdSSe alloy NWs were successfully synthesized. The temperature control over the source vapor concentration plays the key role for the growth.
ContributorsNing, Hao (Author) / Ning, Cunzheng (Thesis advisor) / Yu, Hongbin (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2012
151238-Thumbnail Image.png
Description
Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning

Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs.
ContributorsFan, Jin (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
150681-Thumbnail Image.png
Description
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
ContributorsChen, Dongzi (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
153994-Thumbnail Image.png
Description
GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds

GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds of nanometers thickness and reflective back scattering can potentially offer efficiencies greater than 30 %. The 300 nm GaAs solar cell with AlInP/Au reflective back scattering is carefully designed and demonstrates an efficiency of 19.1 %. The device performance is analyzed using the semi-analytical model with Phong distribution implemented to account for non-Lambertian scattering. A Phong exponent m of ~12, a non-radiative lifetime of 130 ns, and a specific series resistivity of 1.2 Ω·cm2 are determined.

Thin-film CdTe solar cells have also attracted lots of attention due to the continuous improvements in their device performance. To address the issue of the lower efficiency record compared to detailed-balance limit, the single-crystalline Cd(Zn)Te/MgCdTe double heterostructures (DH) grown on InSb (100) substrates by molecular beam epitaxy (MBE) are carefully studied. The Cd0.9946Zn0.0054Te alloy lattice-matched to InSb has been demonstrated with a carrier lifetime of 0.34 µs observed in a 3 µm thick Cd0.9946Zn0.0054Te/MgCdTe DH sample. The substantial improvement of lifetime is due to the reduction in misfit dislocation density. The recombination lifetime and interface recombination velocity (IRV) of CdTe/MgxCd1-xTe DHs are investigated. The IRV is found to be dependent on both the MgCdTe barrier height and width due to the thermionic emission and tunneling processes. A record-long carrier lifetime of 2.7 µs and a record-low IRV of close to zero have been confirmed experimentally.

The MgCdTe/Si tandem solar cell is proposed to address the issue of high manufacturing costs and poor performance of thin-film solar cells. The MBE grown MgxCd1-xTe/MgyCd1-yTe DHs have demonstrated the required bandgap energy of 1.7 eV, a carrier lifetime of 11 ns, and an effective IRV of (1.869 ± 0.007) × 103 cm/s. The large IRV is attributed to thermionic-emission induced interface recombination. These understandings can be applied to fabricating the high-efficiency low-cost MgCdTe/Si tandem solar cell.
ContributorsLiu, Shi (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane R (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015