This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

158800-Thumbnail Image.png
Description
Bicycle stabilization has become a popular topic because of its complex dynamic behavior and the large body of bicycle modeling research. Riding a bicycle requires accurately performing several tasks, such as balancing and navigation which may be difficult for disabled people. Their problems could be partially reduced by providing steering

Bicycle stabilization has become a popular topic because of its complex dynamic behavior and the large body of bicycle modeling research. Riding a bicycle requires accurately performing several tasks, such as balancing and navigation which may be difficult for disabled people. Their problems could be partially reduced by providing steering assistance. For stabilization of these highly maneuverable and efficient machines, many control techniques have been applied – achieving interesting results, but with some limitations which includes strict environmental requirements. This thesis expands on the work of Randlov and Alstrom, using reinforcement learning for bicycle self-stabilization with robotic steering. This thesis applies the deep deterministic policy gradient algorithm, which can handle continuous action spaces which is not possible for Q-learning technique. The research involved algorithm training on virtual environments followed by simulations to assess its results. Furthermore, hardware testing was also conducted on Arizona State University’s RISE lab Smart bicycle platform for testing its self-balancing performance. Detailed analysis of the bicycle trial runs are presented. Validation of testing was done by plotting the real-time states and actions collected during the outdoor testing which included the roll angle of bicycle. Further improvements in regard to model training and hardware testing are also presented.
ContributorsTurakhia, Shubham (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2020
171669-Thumbnail Image.png
Description
Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras are adjusted. While advances in soft sensors contribute to a potential

Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras are adjusted. While advances in soft sensors contribute to a potential solution to sensing outside of a lab environment, most of these sensing methods require the sensors to be embedded into the soft robot arm. In this work, a more practical sensing method is proposed using off-the-shelf sensors and a Robust Extended Kalman Filter based sensor fusion method. Inertial measurement unit sensors and wire draw sensors are used to accurately estimate the state of the robot. An explanation for the need for sensor fusion is included in this work. The sensor fusion state estimate is compared to a motion capture measurement along with the raw inertial measurement unit reading to verify the accuracy of the results. The potential for this sensing system is further validated through Linear Quadratic Gaussian control of the soft robot. The Robust Extended Kalman Filter based sensor fusion shows an error of less than one degree when compared to the motion capture system.
ContributorsStewart, Kyle James (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022
Description
Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are

Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are induced due to aerodynamic effects. Studies indicate that blade flapping, induced drag, and propeller drag influence forward flight performance while other effects like vortex ring state, ground effect affect vertical flight performance. In this thesis, an offboard data-driven approach is used to derive models for parasitic (bare-airframe) drag and propeller drag. Moreover, thrust and torque coefficients are identified from static bench tests. Among the two, parasitic drag is compensated for in the position controller module in the PX4 firmware. 2-D circular, straight line, and minimum snap rectangular trajectories with corridor constraints are tested exploiting differential flatness property wherein altitude and yaw angle are constant. Flight tests are conducted at ASU Drone Studio and results of tracking performance with default controller and with drag compensated position controller are presented. Root mean squared tracking error in individual axes is used as a metric to evaluate the model performance. Results indicate that, for circular trajectory, the root mean squared error in the x-axis has reduced by 44.54% and in the y-axis by 39.47%. Compensation in turn degrades the tracking in both axis by a maximum under 12% when compared to the default controller for rectangular trajectory case. The x-axis tracking error for the straight-line case has improved by 44.96% with almost no observable change in the y-axis.
ContributorsNolastname, Kashyap Sathyamurthy (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2020
161749-Thumbnail Image.png
Description
Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time

Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time basis. Previous studies in the parameter estimation made the assumption that the human parameters are known by the robot; but such may not be the case and there exists uncertainty in the modeling of the human rewards as well as human's modeling of the robot's rewards. The proposed method, empathetic estimation, is tested and compared with the ``non-empathetic'' estimation from the existing works. The case studies are conducted in an uncontrolled intersection with two agents attempting to pass efficiently. Results have shown that in the case of both agents having inconsistent belief of the other agent's parameters, the empathetic agent performs better at estimating the parameters and has higher reward values, which indicates the scenarios when empathy is essential: when agent's initial belief is mismatched from the true parameters/intent of the agents.
ContributorsChen, Yi (Author) / Ren, Yi (Thesis advisor) / Zhang, Wenlong (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2021
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021