This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

156951-Thumbnail Image.png
Description
Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single

Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single modal data and difficulty in analyzing high dimensional data. Towards facilitating the processing and understanding of online data, this dissertation primarily focuses on three challenges that I feel are of great practical importance: handling scale differences in computer vision tasks, such as facial component detection and face retrieval, developing efficient classifiers using partially labeled data and noisy data, and employing multi-modal models and feature selection to improve multi-view data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and accurately detect facial landmarks. For the second challenge, I propose two algorithms that can be used to learn from partially labeled data and noisy data respectively. For the third challenge, I propose a new framework that incorporates feature selection modules into LDA models.
ContributorsZhou, Xu (Author) / Li, Baoxin (Thesis advisor) / Hsiao, Sharon (Committee member) / Davulcu, Hasan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018