This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

158847-Thumbnail Image.png
Description
RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding

RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding of enzymatic pathways. First, sensors for detecting arbitrary target RNAs based the fluorogenic RNA aptamer Broccoli are designed and validated. Studies of three different sensor designs reveal that toehold-initiated Broccoli-based aptasensors provide the lowest signal leakage and highest signal intensity in absence and in presence of the target RNA, respectively. This toehold-initiated design is used for developing aptasensors targeting pathogens. Diagnostic assays for detecting pathogen nucleic acids are implemented by integrating Broccoli-based aptasensors with isothermal amplification methods. When coupling with recombinase polymerase amplification (RPA), aptasensors enable detection of synthetic valley fever DNA down to concentrations of 2 fM. Integration of Broccoli-based aptasensors with nucleic acid sequence-based amplification (NASBA) enables as few as 120 copies/mL of synthetic dengue RNA to be detected in reactions taking less than three hours. Moreover, the aptasensor-NASBA assay successfully detects dengue RNA in clinical samples. Second, RNA scaffolds containing peptide-binding RNA aptamers are employed for programming the synthesis of nonribosomal peptides (NRPs). Using the NRP enterobactin pathway as a model, RNA scaffolds are developed to direct the assembly of the enzymes entE, entB, and entF from E. coli, along with the aryl-carrier protein dhbB from B. subtilis. These scaffolds employ X-shaped RNA motifs from bacteriophage packaging motors, kissing loop interactions from HIV, and peptide-binding RNA aptamers to position peptide-modified NRP enzymes. The resulting RNA scaffolds functionalized with different aptamers are designed and evaluated for in vitro production of enterobactin. The best RNA scaffold provides a 418% increase in enterobactin production compared with the system in absence of the RNA scaffold. Moreover, the chimeric scaffold, with E. coli and B. subtilis enzymes, reaches approximately 56% of the activity of the wild-type enzyme assembly. The studies presented in this dissertation will be helpful for future development of nucleic acid-based assays and for controlling protein interaction for NRPs biosynthesis.
ContributorsTang, Anli (Author) / Green, Alexander (Thesis advisor) / Yan, Hao (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2020