This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

189306-Thumbnail Image.png
Description
Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the

Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the characteristics and functionalities of water pump laboratory experiments, which previously necessitated on-site, group-based participation. The goal is for these simulations to serve as digital twins of the original equipment, allowing students to examine fundamental mechanical principles like the Bernoulli equation and Affinity Laws in a virtual, yet realistic setting. Furthermore, the simulations are designed to accommodate uncertainty calculations, replicating the instrument error (i.e., bias and precision uncertainty) inherent in the original water pump units. The methodology of this simulation design predominantly involves the use of MATLAB SimScape, chosen for its configurability and simplicity, with modifications made to match the original experiment data. Then, subsequent analysis of results between the simulation and experiment is conducted to facilitate the validation process. After executing the full laboratory procedure using the simulations, they displayed rapid operation and produced results that remained within boundaries of experimental uncertainty, it also faces several challenges, such as the inability to simulate the pump cavitation effect and the lack of animation. Future research should focus on addressing these limitations, thereby enhancing the model’s precision and extending its functionality to provide better visualization capabilities and exploration of pump cavitation effects. Furthermore, students’ feedback needs to be collected, since it is essential to assess and validate the effectiveness of this instructional approach.
ContributorsZhong, Ziming (Author) / Milcarek, Ryan J (Thesis advisor) / Wilbur, Joshua D (Thesis advisor) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2023