This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

153069-Thumbnail Image.png
Description
This is a two part thesis:

Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to

This is a two part thesis:

Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to 16 years in three different photovoltaic (PV) power plants with different mounting systems under the hot-dry desert climate of Arizona are evaluated. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is performed for each PV power plant to determine the dominant failure modes in the modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives, and thus, comes to the conclusion that solder bond fatigue/failure with/without gridline/metallization contact fatigue/failure is the most dominant failure mode for these module types in the hot-dry desert climate of Arizona.

Part 2 of this thesis determines the best method to compute degradation rates of PV modules. Three different PV systems were evaluated to compute degradation rates using four methods and they are: I-V measurement, metered kWh, performance ratio (PR) and performance index (PI). I-V method, being an ideal method for degradation rate computation, were compared to the results from other three methods. The median degradation rates computed from kWh method were within ±0.15% from I-V measured degradation rates (0.9-1.37 %/year of three models). Degradation rates from the PI method were within ±0.05% from the I-V measured rates for two systems but the calculated degradation rate was remarkably different (±1%) from the I-V method for the third system. The degradation rate from the PR method was within ±0.16% from the I-V measured rate for only one system but were remarkably different (±1%) from the I-V measured rate for the other two systems. Thus, it was concluded that metered raw kWh method is the best practical method, after I-V method and PI method (if ground mounted POA insolation and other weather data are available) for degradation computation as this method was found to be fairly accurate, easy, inexpensive, fast and convenient.
ContributorsShrestha, Sanjay (Author) / Tamizhmani, Govindsamy (Thesis advisor) / Srinivasan, Devrajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2014