This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156948-Thumbnail Image.png
Description
The Internet of Things ecosystem has spawned a wide variety of embedded real-time systems that complicate the identification and resolution of bugs in software. The methods of concurrent checkpoint provide a means to monitor the application state with the ability to replay the execution on like hardware and software,

The Internet of Things ecosystem has spawned a wide variety of embedded real-time systems that complicate the identification and resolution of bugs in software. The methods of concurrent checkpoint provide a means to monitor the application state with the ability to replay the execution on like hardware and software, without holding off and delaying the execution of application threads. In this thesis, it is accomplished by monitoring physical memory of the application using a soft-dirty page tracker and measuring the various types of overhead when employing concurrent checkpointing. The solution presented is an advancement of the Checkpoint and Replay In Userspace (CRIU) thereby eliminating the large stalls and parasitic operation for each successive checkpoint. Impact and performance is measured using the Parsec 3.0 Benchmark suite and 4.11.12-rt16+ Linux kernel on a MinnowBoard Turbot Quad-Core board.
ContributorsPrinke, Michael L (Author) / Lee, Yann-Hang (Thesis advisor) / Shrivastava, Aviral (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2018
191751-Thumbnail Image.png
Description
Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage disaggregation emerges as a pivotal technology to address these challenges

Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage disaggregation emerges as a pivotal technology to address these challenges by decoupling memory and storage resources from individual servers and managing and provisioning them to applications as a shared resource pool. This dissertation investigates several important aspects of memory and storage disaggregation and proposes novel solutions to support data-intensive applications.First, caching is a fundamental way to utilize disaggregated storage, but building a large disaggregated cache is challenging because the commonly-used fix-sized cache block allocation scheme is unable to provide good cache performance with low memory overhead for diverse cloud workloads with vastly different I/O patterns. The dissertation proposes a novel adaptive cache block allocation approach that dynamically adjusts cache block sizes based on changing I/O patterns. This approach significantly improves I/O performance while reducing memory usage, outperforming traditional fixed-size cache systems in diverse cloud workloads. Evaluation shows that it improves read latency by 20% and write latency by 9%. It also reduces the amount of I/O traffic to cloud block storage by up to 74% while achieving up to 41% memory savings with only 2 ms. Second, large ML applications such as large language model (LLM) inference are memory demanding, but to support them using disaggregated memory brings challenges to memory management since disaggregated memory has higher memory access latency compared to local memory. The dissertation proposes latency-aware memory aggregation which cautiously distributes memory accesses to minimize the latency gap between local and disaggregated memory. It also proposes NUMA-aligned tensor parallelism to further improve the computing efficiency. With these optimizations, LLM inference achieves substantial speedups. For example, first token latency improves by 61%, and end-to-end latency improves by 43% for a LLM inference task which uses a model of 66 billion parameters when the batch size is 8. Finally, to address the cost, power consumption, and volatility of DRAM, the dissertation proposes to incorporate flash memory into memory pools within the disaggregation framework. By establishing a tiered memory architecture which combines fast-tier local DRAM with slow-tier DRAM and flash memory in the memory pool and effectively migrates data based on hotness across memory tiers, this approach not only reduces expenses but also maintains the overall performance and scalability of data-intensive systems. For example, with 50% saving in memory cost, the performance degradation of training ResNet50 on ImageNet dataset is only 2.68%. Together, these contributions systematically optimize the use of memory and storage disaggregation to deliver more efficient, scalable, and cost-effective systems for supporting the data explosion in today’s and future computing systems.
ContributorsYang, Qirui (Author) / Zhao, Ming (Thesis advisor) / Shrivastava, Aviral (Committee member) / Ren, Fengbo (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2024
168534-Thumbnail Image.png
Description
The rapid growth of data generated from Internet of Things (IoTs) such as smart phones and smart home devices presents new challenges to cloud computing in transferring, storing, and processing the data. With increasingly more powerful edge devices, edge computing, on the other hand, has the potential to better responsiveness,

The rapid growth of data generated from Internet of Things (IoTs) such as smart phones and smart home devices presents new challenges to cloud computing in transferring, storing, and processing the data. With increasingly more powerful edge devices, edge computing, on the other hand, has the potential to better responsiveness, privacy, and cost efficiency. However, resources across the cloud and edge are highly distributed and highly diverse. To address these challenges, this paper proposes EdgeFaaS, a Function-as-a-Service (FaaS) based computing framework that supports the flexible, convenient, and optimized use of distributed and heterogeneous resources across IoT, edge, and cloud systems. EdgeFaaS allows cluster resources and individual devices to be managed under the same framework and provide computational and storage resources for functions. It provides virtual function and virtual storage interfaces for consistent function management and storage management across heterogeneous compute and storage resources. It automatically optimizes the scheduling of functions and placement of data according to their performance and privacy requirements. EdgeFaaS is evaluated based on two edge workflows: video analytics workflow and federated learning workflow, both of which are representative edge applications and involve large amounts of input data generated from edge devices.
ContributorsJin, Runyu (Author) / Zhao, Ming (Thesis advisor) / Shrivastava, Aviral (Committee member) / Sarwat Abdelghany Aly Elsayed, Mohamed (Committee member) / Arizona State University (Publisher)
Created2021