This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153490-Thumbnail Image.png
Description
This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows that were created to create the test chip. The first was the pad ring which was used as the staring

This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows that were created to create the test chip. The first was the pad ring which was used as the staring block for creating the test chip. This flow put all of the signals for the chip in the order that was wanted along the outside of the die along with creation of the power ring that is used to supply the chip with a robust power source.

The second flow that was created was used to put together a flash block that is based off of a XILIX XCFXXP. This flow was somewhat similar to how the pad ring flow worked except that optimizations and a clock tree was added into the flow. There was a couple of design redoes due to timing and orientation constraints.

Finally, the last flow that was created was the top level flow which is where all of the components are combined together to create a finished test chip ready for fabrication. The main components that were used were the finished flash block, HERMES, test structures, and a clock instance along with the pad ring flow for the creation of the pad ring and power ring.

Also discussed is some work that was done on a previous multi-project test chip. The work that was done was the creation of power gaters that were used like switches to turn the power on and off for some flash modules. To control the power gaters the functionality change of some pad drivers was done so that they output a higher voltage than what is seen in the core of the chip.
ContributorsLieb, Christopher (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2015
155708-Thumbnail Image.png
Description
Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded with Physical Unclonable Function (PUF) [Suh07] and Sense Amplifier Test (SA Test) mode. With PUF mode structures, the fabrication and environmental mismatches in bit cells are used to generate unique identification bits. These bits are fixed and known as preferred state of an SRAM bit cell. The direct access test structure is a measurement unit for offset voltage analysis of sense amplifiers. These designs are manufactured using a foundry bulk CMOS 55 nm low-power (LP) process. The details about SRAM bit-cell and peripheral circuit design is discussed in detail, for certain cases the circuit simulation analysis is performed with random variations embedded in SPICE models. Further, post-silicon testing results are discussed for normal operation of SRAMs and the special test modes. The silicon and circuit simulation results for various tests are presented.
ContributorsDosi, Ankita (Author) / Clark, Lawrence (Thesis advisor) / Seo, Jae-Sun (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2017