This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

153029-Thumbnail Image.png
Description
Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI and PlanetLab have further improved the current Internet-based resource provisioning system by allowing end users to construct a virtual networking environment. By archiving the similar goal but with more flexible and efficient performance, I present the design and implementation of MobiCloud that is a geo-distributed mobile cloud computing platform, and G-PLaNE that focuses on how to construct the virtual networking environment upon the self-designed resource provisioning system consisting of multiple geo-distributed clusters. Furthermore, I conduct a comprehensive study to layout existing Mobile Cloud Computing (MCC) service models and corresponding representative related work. A new user-centric mobile cloud computing service model is proposed to advance the existing mobile cloud computing research.

After building the MobiCloud, G-PLaNE and studying the MCC model, I have been using Software Defined Networking (SDN) approaches to enhance the system security in the cloud virtual networking environment. I present an OpenFlow based IPS solution called SDNIPS that includes a new IPS architecture based on Open vSwitch (OVS) in the cloud software-based networking environment. It is enabled with elasticity service provisioning and Network Reconfiguration (NR) features based on POX controller. Finally, SDNIPS demonstrates the feasibility and shows more efficiency than traditional approaches through a thorough evaluation.

At last, I propose an OpenFlow-based defensive module composition framework called CloudArmour that is able to perform query, aggregation, analysis, and control function over distributed OpenFlow-enabled devices. I propose several modules and use the DDoS attack as an example to illustrate how to composite the comprehensive defensive solution based on CloudArmour framework. I introduce total 20 Python-based CloudArmour APIs. Finally, evaluation results prove the feasibility and efficiency of CloudArmour framework.
ContributorsXing, Tianyi (Author) / Huang, Dijiang (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Medhi, Deepankar (Committee member) / Arizona State University (Publisher)
Created2014
149382-Thumbnail Image.png
Description
Today, many wireless networks are single-channel systems. However, as the interest in wireless services increases, the contention by nodes to occupy the medium is more intense and interference worsens. One direction with the potential to increase system throughput is multi-channel systems. Multi-channel systems have been shown to reduce collisions and

Today, many wireless networks are single-channel systems. However, as the interest in wireless services increases, the contention by nodes to occupy the medium is more intense and interference worsens. One direction with the potential to increase system throughput is multi-channel systems. Multi-channel systems have been shown to reduce collisions and increase concurrency thus producing better bandwidth usage. However, the well-known hidden- and exposed-terminal problems inherited from single-channel systems remain, and a new channel selection problem is introduced. In this dissertation, Multi-channel medium access control (MAC) protocols are proposed for mobile ad hoc networks (MANETs) for nodes equipped with a single half-duplex transceiver, using more sophisticated physical layer technologies. These include code division multiple access (CDMA), orthogonal frequency division multiple access (OFDMA), and diversity. CDMA increases channel reuse, while OFDMA enables communication by multiple users in parallel. There is a challenge to using each technology in MANETs, where there is no fixed infrastructure or centralized control. CDMA suffers from the near-far problem, while OFDMA requires channel synchronization to decode the signal. As a result CDMA and OFDMA are not yet widely used. Cooperative (diversity) mechanisms provide vital information to facilitate communication set-up between source-destination node pairs and help overcome limitations of physical layer technologies in MANETs. In this dissertation, the Cooperative CDMA-based Multi-channel MAC (CCM-MAC) protocol uses CDMA to enable concurrent transmissions on each channel. The Power-controlled CDMA-based Multi-channel MAC (PCC-MAC) protocol uses transmission power control at each node and mitigates collisions of control packets on the control channel by using different sizes of the spreading factor to have different processing gains for the control signals. The Cooperative Dual-access Multi-channel MAC (CDM-MAC) protocol combines the use of OFDMA and CDMA and minimizes channel interference by a resolvable balanced incomplete block design (BIBD). In each protocol, cooperating nodes help reduce the incidence of the multi-channel hidden- and exposed-terminal and help address the near-far problem of CDMA by supplying information. Simulation results show that each of the proposed protocols achieve significantly better system performance when compared to IEEE 802.11, other multi-channel protocols, and another protocol CDMA-based.
ContributorsMoon, Yuhan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Huang, Dijiang (Committee member) / Reisslein, Martin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2010
168504-Thumbnail Image.png
Description
Realizing the applications of Internet of Things (IoT) with the goal of achieving a more efficient and automated world requires billions of connected smart devices and the minimization of hardware cost in these devices. As a result, many IoT devices do not have sufficient resources to support various protocols required

Realizing the applications of Internet of Things (IoT) with the goal of achieving a more efficient and automated world requires billions of connected smart devices and the minimization of hardware cost in these devices. As a result, many IoT devices do not have sufficient resources to support various protocols required in many IoT applications. Because of this, new protocols have been introduced to support the integration of these devices. One of these protocols is the increasingly popular routing protocol for low-power and lossy networks (RPL). However, this protocol is well known to attract blackhole and sinkhole attacks and cause serious difficulties when using more computationally intensive techniques to protect against these attacks, such as intrusion detection systems and rank authentication schemes. In this paper, an effective approach is presented to protect RPL networks against blackhole attacks. The approach does not address sinkhole attacks because they cause low damage and are often used along blackhole attacks and can be detected when blackhole attaches are detected. This approach uses the feature of multiple parents per node and a parent evaluation system enabling nodes to select more reliable routes. Simulations have been conducted, compared to existing approaches this approach would provide better protection against blackhole attacks with much lower overheads for small RPL networks.
ContributorsSanders, Kent (Author) / Yau, Stephen S (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2021
157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
ContributorsYu, Ruozhou, Ph.D (Author) / Xue, Guoliang (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019
158005-Thumbnail Image.png
Description
The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have

The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have access to their data once they are appended to the chain. In these scenarios, the data owner actually loses control of the data once they are uploaded to the outside storage. Encryption-before-uploading is the way to solve this issue, however traditional encryption schemes such as AES, RSA, ECC, bring about great overheads in key management on the data owner end and could not provide fine-grained access control as well.

Attribute-Based Encryption (ABE) is a cryptographic way to implement attribute-based access control, which is a fine-grained access control model, thus solving all aforementioned issues. With ABE, the data owner would encrypt the data by a self-defined access control policy before uploading the data. The access control policy is an AND-OR boolean formula over attributes. Only users with attributes that satisfy the access control policy could decrypt the ciphertext. However the existing ABE schemes do not provide some important features in practical applications, e.g., user revocation and attribute expiration. Furthermore, most existing work focus on how to use ABE to protect cloud stored data, while not the blockchain applications.

The main objective of this thesis is to provide solutions to add two important features of the ABE schemes, i.e., user revocation and attribute expiration, and also provide a practical trust framework for using ABE to protect blockchain data. To add the feature of user revocation, I propose to add user's hierarchical identity into the private attribute key. In this way, only users whose identity is not revoked and attributes satisfy the access control policy could decrypt the ciphertext. To add the feature of attribute expiration, I propose to add the attribute valid time period into the private attribute key. The data would be encrypted by access control policy where all attributes have a temporal value. In this way, only users whose attributes both satisfy the access policy and at the same time these attributes do not expire,

are allowed to decrypt the ciphertext. To use ABE in the blockchain applications, I propose an ABE-enabled trust framework in a very popular blockchain platform, Hyperledger Fabric. Based on the design, I implement a light-weight attribute certificate authority for attribute distribution and validation; I implement the proposed ABE schemes and provide a toolkit which supports system setup, key generation,

data encryption and data decryption. All these modules were integrated into a demo system for protecting sensitive les in a blockchain application.
ContributorsDong, Qiuxiang (Author) / Huang, Dijiang (Thesis advisor) / Sen, Arunabha (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2020