This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

157886-Thumbnail Image.png
Description
Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively explore in environments, distinguish and localize a requested target and

Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively explore in environments, distinguish and localize a requested target and approach the target following acquired strategies. Despite a variety of advances in mobile robotics, enabling an autonomous with above-mentioned abilities is still a challenging and complex task. However, the solution to the task is very likely to accelerate the landing of assistive robots.

Reinforcement learning is a method that trains autonomous robot based on rewarding desired behaviors to help it obtain an action policy that maximizes rewards while the robot interacting with the environment. Through trial and error, an agent learns sophisticated and skillful strategies to handle complex tasks in the environment. Inspired by navigation procedures of human beings that when navigating through environments, humans reason about accessible spaces and geometry of the environment a lot based on first-person view, figure out the destination and then ease over, this work develops a model that maps from pixels to actions and inherently estimate the target as well as the free-space map. The model has three major constituents: (i) a cognitive mapper that maps the topologic free-space map from first-person view images, (ii) a target recognition network that locates a desired object and (iii) an action policy deep reinforcement learning network. Further, a planner model with cascade architecture based on multi-scale semantic top-down occupancy map input is proposed.
ContributorsZheng, Shibin (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2019