This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
149893-Thumbnail Image.png
Description
Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA to 200mA for the direct current reading topology and from 1mA to 500mA for the indirect current reading topology across a typical board Cu-trace resistance of 1 ohm with less than 10 µV input-referred offset, 0.3 µV/°C offset drift and 0.1% accuracy for both topologies. Proposed systems avoid using a costly zero-temperature coefficient (TC) sense resistor that is normally used in typical CSM systems. Instead, both of the designs used existing Cu-trace on the printed circuit board (PCB) in place of the costly resistor. The systems use chopper stabilization at the front-end amplifier signal path to suppress input-referred offset down to less than 10 µV. Switching current-mode (SI) FIR filtering technique is used at the instrumentation amplifier output to filter out the chopping ripple caused by input offset and flicker noise by averaging half of the phase 1 signal and the other half of the phase 2 signal. In addition, residual offset mainly caused by clock feed-through and charge injection of the chopper switches at the chopping frequency and its multiple frequencies notched out by the since response of the SI-FIR filter. A frequency domain Sigma Delta ADC which is used for the indirect current reading type design enables a digital interface to processor applications with minimally added circuitries to build a simple 1st order Sigma Delta ADC. The CSMs are fabricated on a 0.7µm CMOS process with 3 levels of metal, with maximum Vds tolerance of 8V and operates across a common mode range of 0 to 26V for the direct current reading type and of 0 to 30V for the indirect current reading type achieving less than 10nV/sqrtHz of flicker noise at 100 Hz for both approaches. By using a semi-digital SI-FIR filter, residual chopper offset is suppressed down to 0.5mVpp from a baseline of 8mVpp, which is equivalent to 25dB suppression.
ContributorsYeom, Hyunsoo (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
150274-Thumbnail Image.png
Description
Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology

Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology applications owing to their ease of integration, small die area and scalability in deep submicron processes. However, due to their supply sensitivity and poor phase noise performance, they have limited use in applications demanding low phase noise floor, such as wireless or optical transceivers. Particularly, out-of-band phase noise of RO-based PLLs is dominated by RO performance, which cannot be suppressed by the loop gain, impairing RF receiver's sensitivity or BER of optical clock-data recovery circuits. Wide loop bandwidth PLLs can overcome RO noise penalty, however, they suffer from increased in-band noise due to reference clock, phase-detector and charge-pump. The RO phase noise is determined by the noise coming from active devices, supply, ground and substrate. The authors adopt an auxiliary circuit with inverse delay sensitivity to supply noise, which compensates for the delay variation of inverter cells. Feed-forward noise-cancelling architecture that improves phase noise characteristic of RO based PLLs is presented. The proposed circuit dynamically attenuates RO phase noise contribution outside the PLL bandwidth, or in a preferred band. The implemented noise-cancelling loop potentially enables application of RO based PLL for demanding frequency synthesizers applications, such as optical links or high-speed serial I/Os.
ContributorsMin, Seungkee (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
151580-Thumbnail Image.png
Description
Mobile electronic devices such as smart phones, netbooks and tablets have seen increasing demand in recent years, and so has the need for efficient, responsive and small power management solutions that are integrated into these devices. Every thing from the battery life to the screen brightness to how warm the

Mobile electronic devices such as smart phones, netbooks and tablets have seen increasing demand in recent years, and so has the need for efficient, responsive and small power management solutions that are integrated into these devices. Every thing from the battery life to the screen brightness to how warm the device gets depends on the power management solution integrated within the device. Much of the future success of these mobile devices will depend on innovative, reliable and efficient power solutions. Perhaps this is one of the drivers behind the intense research activity seen in the power management field in recent years. The demand for higher accuracy regulation and fast response in switching converters has led to the exploration of digital control techniques as a way to implement more advanced control architectures. In this thesis, a novel digitally controlled step-down (buck) switching converter architecture that makes use of switched capacitors to improve the transient response is presented. Using the proposed architecture, the transient response is improved by a factor of two or more in comparison to the theoretical limits that can be achieved with a basic step down converter control architecture. The architecture presented in this thesis is not limited to digitally controlled topologies but rather can also be used in analog topologies as well. Design and simulation results of a 1.8V, 15W, 1MHz digitally controlled step down converter with a 12mV Analog to Digital Converter (ADC) resolution and a 2ns DPWM (Digital Pulse Width Modulator) resolution are presented.
ContributorsHashim, Ahmed (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2013